

Installation & Operation Manual

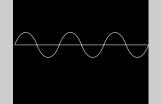
© 2002 ClearOne Communications, Inc. All rights reserved. No part of this document may be reproduced in any form or by any means without written permission from ClearOne Communications. Printed in the United States of America. ClearOne Communications reserves specific privileges. Information in this document is subject to change without notice.

XAP 800 Installation and Operation Manual ClearOne Part No. 800-151-101 July 2002 (Rev. 3.1)

XAP 800 Installation and Operation Manual

Table of Contents

CHAPTER 1: Introduction
Product overview
New Features
Product registration
Product returns
Professional Services Group
Unpacking
Controls and Connections
Front panel4
Rear panel5
Networking
Expansion bus
Operational Requirements
Power
Equipment placement
Environmental8
G-Ware requirements
CHAPTER 2: Installation9
Hardware Setup
To connect the unit10
Networking Units
Expansion bus connections11
Device IDs
Mixer mode
LCD Programming
LCD menu tree13
System menu14
RS-232 menu15
Meter menu16
Inputs menu
Outputs menu18


CHAPTER 3: System Configuration
G-Ware Requirements
Creating Floppy Disk Copies
Installing G-Ware
To install G-Ware
Site Setup
Creating a new site
Adding a XAP 800
Configuring Unit Properties
G-Ware Screens
Flow Screen
Matrix Screen
Audio Routing
Expansion bus O–Z routing
Process A–H routing
Cross point attenuation
Matrix report
Inputs and Outputs
Inputs 1–8
Inputs 9–12
Outputs 1–12
Expansion Buses
From Expansion Bus O–Z48
To Expansion Bus O–Z48
Processing
Processing A–H
CHAPTER 4: Advanced Configuration
Presets
Overview
Creating Presets
Running presets
Running multiple presets simultaneously
Macros
Creating macros
Editing macros
Punning macros 66

CHAPIER 5: Operation67
Utilities
Signal Generator
Document Compare Utility
Print Reports
GFirm Firmware Utility
G-Ware Switcher
Copy and paste settings
Message Log
Monitoring Views
Gate View
Meter Views
CHAPTER 6: Control77
GPIO Builder
Control/Status A
Remote Builder
XAP IR Remote
ClearOne Control Panels
RS-232 Port
Remote modem access
Serial commands
Command Strings
APPENDICES85
Appendix A: Specifications
Appendix B: Pinouts
Appendix C: Control Panel
Appendix D: Accessories
Appendix E: Serial Commands
Appendix F: Warranty
Appendix G: Compliance
Appendix G. Compilance
Glossary
Index 140

CHAPTER 1: Introduction

Product overview

Congratulations on purchasing the XAP 800, a highly advanced twelve-by-twelve digital matrix mixer with Gentner® Distributed Echo Cancellation®, noise cancellation, and audio processing. It uses an internal macro language and 32 user-definable presets to quickly adapt to a variety of teleconferencing and sound reinforcement applications such as distance learning, teletraining, telemedicine, courtrooms, conference rooms, boardrooms, hotels, and houses of worship.

In its most simple form, the XAP 800 is a mic mixing matrix. As such, all mic mixing parameters can be customized and any input or combination of inputs can be routed to any output or combination of outputs, with attenuation adjustments at each cross point. This allows great flexibility in accommodating a variety of applications and requirements.

The XAP 800 features numerous functions which greatly enhance its performance and flexibility. For example, it can gate mics on and off when the sound within a mic's acceptance pattern reaches a certain level.

The XAP 800 monitors each mic independently, observing ambient levels and making decisions based on each mic's environment. Thus, the input for a mic located in a highly reverberant part of a conference room is gated, mixed, and processed to compensate for the changes in that area and reduce echo and noise. This improves audio quality and decreases the possibility of feedback.

The XAP 800 facilitates local and remote PC setup and diagnostics, logic outputs, and automatic gated mic operation. Mic inputs can be individually customized to gate on and off as you want, while automatic gain control keeps the overall sound level consistent. Eight of the 12 channels can be configured as an automatic microphone mixer.

Adjustments in routing, level, and other functions can be made through presets activated through a closure on the rear panel, an RS-232 serial interface, or a control panel on the expansion bus data channel.

The XAP 800 features eight audio processing blocks, each with 15 filters. Each filter can be configured as a parametric equalizer, high pass, low pass, CD horn, high shelving, low shelving, all pass, or crossover. This allows you to tailor the XAP 800's audio response to optimize the audio quality and fidelity characteristics of a wide variety of sound reinforcement systems.

The GPIO (general purpose input/output) allows switching among any of 32 user-stored presets. This gives you real-time flexibility to meet a variety of reinforcement requirements.

Network-based interconnectivity allows up to eight XAP 800s and XAP 400s to be connected and controlled as a single unit, allowing microphone coverage in applications requiring up to 64 mics.

The XAP 800's Macro Pro™ scripting language allows the unit to function without the need for an external controller. However, it can be easily interfaced to an external controller via either of the two RS-485 ports. The unit can also interface with a PC through the RS-232 port.

New Features

- Virtual references. The XAP 800 now supports echo cancellation summing.
 Four user-definable virtual references are provided which can use multiple signals as the echo cancellation reference point without sacrificing an analog output. This added flexibility further enhances echo cancellation performance.
- Improved noise cancellation. Our industry-leading noise cancellation keeps background noise to a minimum while retaining top-level voice quality, echo cancellation performance, and full-duplex capability.
- Front panel gain and mute control. Now gain and mute adjustments can be made from the front panel. Using these controls allows you to make quick volume and mute changes without connecting through G-Ware.
- Safety Mute. The new Safety Mute button on the main G-Ware toolbar allows you to mute all outputs with one simple click if feedback or audio problems occur during the configuration process.
- **Preset and Macro Passwords.** You can now password protect your presets and macros to prevent unauthorized changes.
- **Clear Matrix**. This new button on the Matrix Screen makes it easy to clear all cross point cells in the matrix. Simply click the button and confirm the action.
- RAMP serial command. The new RAMP serial command (see page 123) gives you greater control over gain adjustments. You can specify the rate at which the gain increases and decreases as well as the target level.

Professional Services Group

If you need any additional information on how to install, set up, or operate your system, please contact us at one of the locations listed below. We welcome and encourage your comments so we can continue to improve our products and serve your needs.

ClearOne Communications ~ 1825 Research Way ~ Salt Lake City, Utah 84119

Technical Support

Telephone: 1.800.283.5936(USA) or 1.801.974.3760

Fax: 1.801.977.0087

E-mail: tech.support@clearone.com

Web site: www.clearone.com

Sales and Customer Service

Telephone: 1.800.945.7730 (USA) or 1.801.975.7200 Fax: 1.800.933.5107 (USA) or 1.801.977.0087

E-mail: sales@clearone.com

ClearOne Communications EuMEA GmbH

Leonhardstr. 16-18, D-90443 Nuremberg, Germany

Telephone: +49 911 955159-0
Fax: +49 911 955159-10
E-mail: global@clearone.com

Product registration

Please register your XAP 800 online by visiting ClearOne Technical Support at **www.clearone.com.** When your product is properly registered, ClearOne Communications is better able to serve you should you require technical assistance. Registration information is also used to notify you of upgrades and new product information.

Product returns

All product returns require a return authorization (RA) number. Please contact ClearOne Technical Support before attempting to return your XAP 800 unit.

Unpacking

Ensure that the following items were received with your shipment:

ClearOne is not responsible product for damage incurred during shipment. You must make claims directly with the carrier. Inspect your shipment carefully for obvious signs of damage. If the shipment appears to be damaged, retain the original boxes and packing material for inspection by the carrier. Contact your carrier immediately.

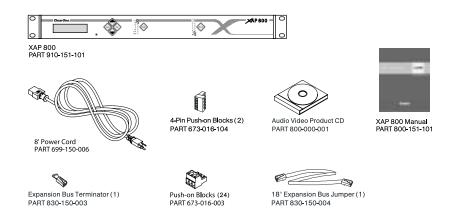


Figure 1.1. Equipment included with XAP 800 unit

Controls and Connections

Front panel



Figure 1.2. Front panel controls

All front panel buttons are also used to enter the front panel passcode. Security (page 26) for more details.

- A. LCD. This display is for XAP 800 setup in conjunction with the four associated front-panel buttons [B, C, and D]. Baud rate and flow control must be configured from the front panel; see the LCD Menu Tree on page 13 for the location of these in the menu system. Other functions accessed via the front panel include system options, RS-232 configuration, troubleshooting, and level readings.
- B. Enter. This button is used when programming the XAP 800 via the LCD window. To move deeper in the menu or execute a selected parameter, press the Enter button.

- C. ▲/▼ These buttons scroll up and down through vertical programming options within a specific XAP 800 programming parameter or increases/decreases a numeric value.
- D. **Esc.** This button steps you out of a selected parameter or moves you up one level in the menu. When a parameter has been displayed with the arrow buttons [C], you can select it with the Enter button [B] to modify it. Then, you can step out of the menu with the Esc button.
- E. **LED meter.** This assignable, peak-level LED bar meter is used to display the audio level of an input, output, or processing channel of the XAP 800.
- F. **Meter.** Takes you directly to the Meter branch of the XAP 800's LCD menu tree.
- G. **LED 1–8.** These LEDs indicate Inputs 1–8 gate status.

Rear panel

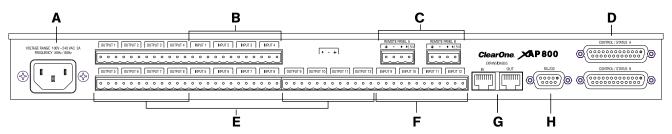


Figure 1.3. Rear panel connections

- A. Power. This power module accommodates power ranging from 100–240VAC, 50/60Hz. The module uses an IEC-type connector. No switching is required.
- B. Inputs 1–8. These Phoenix block connectors are for connection of eight mic-level or line-level (selectable) inputs. These connectors are typically used for mics, but can be configured for use with VCRs, CD players, XAP TH2, etc. These inputs can be mixed in any gated or non-gated combination and routed to any of the 12 outputs. Default input level is -55dBu. For more information about input adjustments, see page 32. For electrical specifications, see Appendix A: Specifications.
- C. RS-485 Remote Panel A/B Port. These four-pin Phoenix connector ports allow you to control the XAP 800 with the ClearOne Control Panel or XAP IR Remote Control.

Power is supplied through the RS-485 ports to the remote Control Panels from the XAP 800. This power is limited to a total of 300mA at 15 volts for each connector. Over-current protection is provided on the +15V pins to prevent damage in the event of shorting. External power can be provided to control devices when more current is required. See page 92 for maximum cable run distances when using ClearOne Control Panels.

D. Control/Status Ports A and B. These two female DB25 connector are used to connect control devices to the XAP 800. The control devices have access to the command set for the XAP 800 and can be used for common functions such as volume control, muting, preset change, room combining, etc. Devices can be connected to either port.

For instructions on how to program the control and status pins, see the GPIO section on page 77. The default settings allow control and status of inputs, outputs, volume, and presets. These pins are active low. The 32 presets can also be activated via these connectors. For pinout and default information, see Appendix B.

- E. **Outputs 1–12.** These three-pin Phoenix connectors are for connection of twelve line-level balanced outputs with three-pin Phoenix connectors. These outputs are typically used for connection to VCRs, tape recorders, amplifiers, codecs, phone hybrids, and other audio devices. These outputs may be configured to contain any combination of gated and non-gated inputs. The nominal output level is OdBm.
- F. Inputs 9–12. These Phoenix connectors are for connection of up to four line-level inputs. These are typically used for connection of VCRs, tape players, CD players, and other audio sources. They can be routed to any output or multiple outputs. Nominal level is OdBu.
- G. Expansion Bus In/Out. This RJ-45 connector is part of the expansion bus (E-bus), which allows up to eight XAP 800 or XAP 400 units and up to 16 XAP TH2 units to be networked together. The E-bus consists of two buses: one for control, the other for passing audio and mic information (see Control bus, page 7). Using Cat 5 twisted-pair cable, you can separate adjoining units up to 80 feet (24 meters). See the diagram on page 11.
- RS-232. This female DB9 serial port is for interconnection between the XAP 800 and a PC, modem, or other custom remote controller. For serial protocol, see Appendix B: Connector Pinouts.

Networking

Expansion bus

The digital mix-minus expansion bus (RJ-45 LAN) is used to connect up to eight XAP 800/400s and 16 XAP TH2 units, where the total number of microphone inputs does not exceed 64. The maximum distance between interconnected XAP 800/400 or PSR1212 units is 80 feet (24 meters). Connecting a XAP TH2 must not increase the cable length between two PSR1212s, XAP 800s and/or XAP 400s beyond 80 feet. ClearOne recommends that category five twisted-pair (10BaseT LAN) cable be used.

The expansion bus (E-bus) allows audio routing between destinations on the E-bus network. The E-bus contains 12 independent digital audio buses labeled O–Z which can route mic or line level inputs in any combination across the E-bus network. The O–Z buses are divided into two groups (O–R and S–Z) based on their capabilities and default settings. The E-bus also contains four PA adapt/acoustic echo cancellation reference buses, four global gating buses, and one control bus.

- O-R buses. These four audio buses are defaulted as the mic mix buses; they
 can communicate the NOM count and mic mixing parameters across the
 network to other XAP 800s. All gated mics are routed to the 0 bus by default.
- S-Z buses. These eight buses are defaulted as auxiliary mix buses. They are
 used to route auxiliary audio, such as from a CD player or VCR, to and from
 other units on the network. These buses are also used as mic mix buses when
 NOM count is not required.
- PA Adapt/Acoustic Echo Cancellation Reference buses. These buses allow an input from a XAP 800 to reference an output on another linked XAP 400/800. See PA Adapt and AEC Reference on page 33 for more information.
- Global Gating Groups A–D buses. These mix-minus buses are defined as
 microphone gating groups which support first-mic priority, maximum
 number of mics, etc. and work across all linked XAP 400/800s. Unlike the
 audio buses, they contain only mic status and gate parameters. See page 41
 for more information about gating groups.
- Control bus. The control bus is an independent channel from the E-bus's
 audio channel; it uses a different pair of wires on the same E-bus cable. This
 allows control information to pass even if the units are not using the audio
 link. The XAP 800 supports the full set of commands through the control bus.

The latency or propagation delay is <1ms.

Operational Requirements

Power

The XAP 800 automatically accommodates voltage requirements of 100–240VAC, 50/60Hz, 15W.

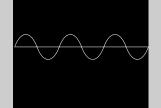
Equipment placement

The XAP 800 units are designed for installation in a standard 19-inch equipment rack. You can also purchase side panels for desktop placement. See Appendix D for a list of accessories.

Environmental

The XAP 800 can be safely operated in a room with varying temperatures between 32 $^{\circ}$ F/0 $^{\circ}$ C and 110 $^{\circ}$ F/43 $^{\circ}$ C.

G-Ware requirements


ClearOne's G-Ware software requires the following minimum system configuration:

• Minimum RAM requirement is determined by the operating system

Windows 95 OSR2	64MB
Windows 98	64MB
Windows ME	64MB
Windows NT	64MB
Windows 2000	128MB
Windows XP	256MB

- PII 200MHz (or AMD equal) or higher processor
- 8MB Video Card
- 1024x768 (16 bit) High Color monitor
- Internet Explorer 4
- 20MB of free hard disk space
- RS-232 COM port
- CD-ROM drive

CHAPTER 2: Installation

The XAP 800 is designed for easy installation and setup. All connections are made through rear-panel connectors. This chapter provides instructions on making hardware connections, creating an expansion bus (E-bus) network, assigning device ID numbers, selecting the mixer mode, and using the front panel LCD menu.

Hardware Setup

The diagram below illustrates the typical connections that are made for a single-unit XAP 800 system. The default routing settings in the G-Ware Matrix Screen allow the XAP 800 to work out of the box for this type of installation.

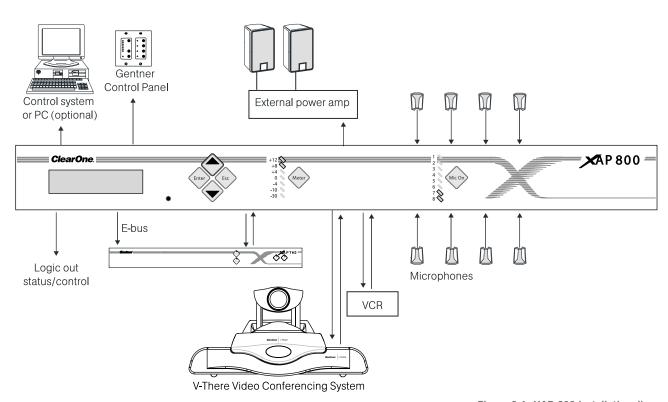


Figure 2.1. XAP 800 installation diagram

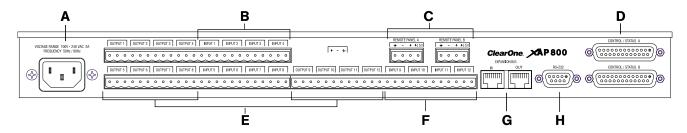
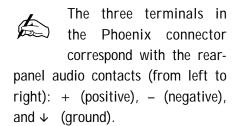


Figure 2.2. XAP 800 rear-panel connectors


To connect the unit

- 1. Place the unit in a standard 19-inch rack and attach it securely.
- 2. If you are using a custom controller for control and status, plug it into the DB25 Control/Status A or B port [D].

If you are using an external RS-232 controller, connect it to the RS-232 port [I].

- 3. Wire the inputs and outputs to the XAP 800 using the provided threeterminal Phoenix push-on connectors. These connectors are designed for easy wiring; simply insert the desired wire into the appropriate connector opening and tighten down the top screw.
 - Inputs 1–8 [B] Mic or line level inputs
 - Inputs 9–12 [F] Line level inputs only
 - Outputs 1–12 [E] Line level outputs
- 4. If you are using a ClearOne Remote Panel, wire it to the RS-485 port [C] using the provided four-terminal Phoenix push-on connectors.
- 5. Plug in the XAP 800 to complete the installation. The power output [A] will operate at any level between 100–240VAC and 50–60Hz.

If you are installing only one XAP 800 and are not connecting it to any other XAP or PSR1212 units, you have completed the hardware installation.

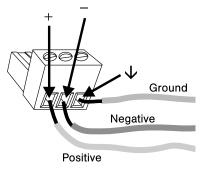


Figure 2.3. Phoenix push-on connector

Networking Units

Expansion bus connections

Using the Expansion Bus ports (RJ-45), you can connect up to eight XAP 800/400s and 16 XAP TH2 units, where the total number of microphone inputs does not exceed 64. Make connections between units in daisy-chain fashion using the short RJ-45 jumper. If your units are further apart, use category five twisted-pair cable.

The maximum distance between interconnected XAP 800/400 or PSR1212 units is 80 feet (24 meters). Expansion bus cable length is calculated between XAP 800s/400s and PSR1212s. The cable connecting a XAP TH2 to the network is included in the cable length between the XAP 800 or XAP 400. For example, if the cable from the XAP 800 to the XAP TH2 is 50 feet and the cable from the XAP TH2 to the second XAP 800 is 50 feet, then the total length between the two XAP 800s is 100 feet which is beyond the maximum 80-foot limit.

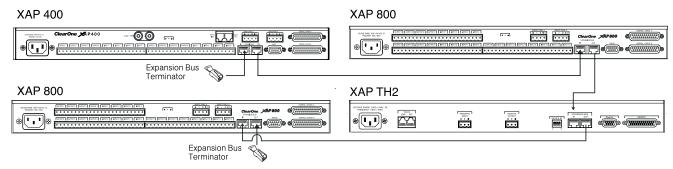
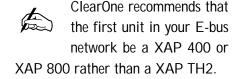



Figure 2.4. E-bus connection diagram

To create an expansion bus network

- 1. Plug the expansion bus terminator in the **Expansion Bus In** connector of the first unit in the network.
- Connect the RJ-45 jumper cable (or Cat 5 twisted pair cable) to the
 Expansion Bus Out connector of the first unit in the network and
 Expansion Bus In connector of the second unit. Continue connecting units in the same fashion.
- 3. Plug the expansion bus terminator in the **Expansion Bus Out** connector on the final unit to complete the network connections.

If the E-bus network is not connected properly, the front panel LEDs will flash on the units that are physically connected to the network. To correct the problem, check for broken connections and reconnect the expansion bus cables.

RS-232 system-wide control can be provided by any unit in the network.

If the same device ID is assigned to more than one unit on the E-bus network,

the Meter LED "+12" will flash red, the Mic LEDs "1," "2," "4," and "8" will flash green on the affected units. To correct the problem, change the device ID on one of the conflicting units.

You can also use G-Ware to select a mixer mode. See page 25.

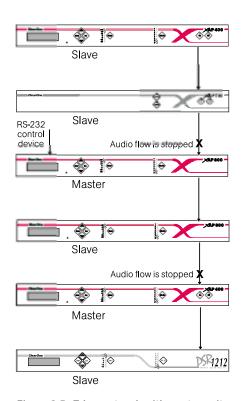


Figure 2.5. E-bus network with master units

Device IDs

Once your expansion bus connections are made (and if you have more than one XAP 800 at a site), you need to set up a unique expansion bus device ID number—a network address—for each XAP 800 on the network. As shipped from the factory, all XAP 800s are set to device ID 0.

To assign device IDs

- Press the front-panel Enter button, then scroll through the menu until the System menu is visible.
- 2. Press **Enter**, then scroll through the menu until **Device ID** is visible.
- 3. Press **Enter**, then scroll through the eight (0–7) options. When the desired device ID is visible, press **Enter** to select it. (You can also set the device ID in the Unit Properties window of G-Ware software see page 25.)
- 4. Repeat this process for each XAP 800 on the expansion bus network.

Mixer mode

There are two mixer mode settings: slave (default) and master. A master unit is not required in a networked system and in most installations, all units will be slaves. Master units ignore audio from upstream units. This prevents audio from being received from units above the master unit in the network. However, global control of the system is still maintained by whichever XAP 400/800 or PSR1212 unit is connected to a control device through its RS-232 or RS-485 ports. Control is not affected by master/slave designations.

In Figure 2.5, the third unit in the network is a master. It prevents the audio from the first and second units from being passed down the network chain. Likewise the second master unit in the network will not pass on the audio from the unit before it. The third unit provides system-wide control through a connection to its RS-232 port.

To select a mixer mode

- 1. Press the front panel **Enter** button and scroll through the menu until System menu is visible. Press **Enter** to select the menu.
- 2. Scroll through the System menu and select **Mixer Mode**.
- Select the mixer setting you want to use. Repeat for additional units.

LCD Programming

The XAP 800's front panel is intuitive to operate, thanks to its simple interface: a 2x16 character LCD, menu buttons, and a peak-level LED bar meter. Although most of the XAP 800's features are programmed with G-Ware software (see page 23), the front panel can be used for simple adjustments and meter monitoring.

G-Ware software is required to complete system setup.

When power is applied to the XAP 800, the LCD panel will first read INITIALIZING. If an error is displayed, contact technical support. When initialization is complete, "XAP 800" is displayed on the top line and "Unit 0" is displayed on the bottom line.

LCD menu tree

The menu tree features five main menus, each with submenus. These branches typically end when an adjustable parameter or viewable value is reached. The diagram below shows the LCD menu tree.

Pressing Esc at the top of the tree does nothing.

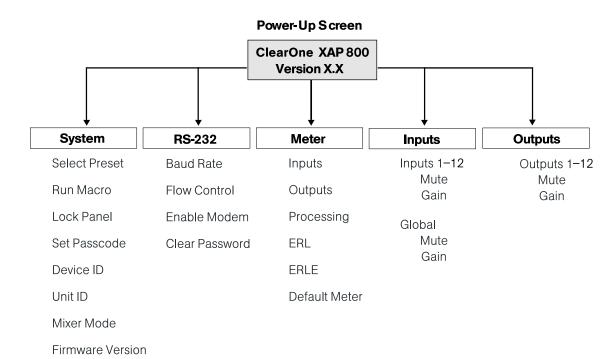


Figure 2.6. LCD menu tree

The five main menus are: System, RS-232, Meter, Inputs, and Outputs. All submenu items are arranged under these menus. Use the Enter button to select items and the ▲ and ▼ buttons to scroll through menus and submenus. When the last menu item is reached, the display scrolls back to the beginning of the list. The Esc button allows you to back out of the menus.

To adjust a parameter

- 1. Scroll to the parameter you want to adjust. Press Enter to select the parameter. The parameter will flash when selected.
- 2. Adjust the value with the ▲ and ▼ buttons. As the value is adjusted, the parameter is updated immediately.
- 3. To store the new value, press **Enter**. To discard the change and revert back to the old value, press **Esc**.

If the Meter button is pressed while a parameter is being adjusted, the LCD will switch to the Meter menu.

System menu

There are eight system-level parameters (see Figure 2.6): Select Preset, Run Macro, Lock Panel, Set Passcode, Device ID, Mixer Mode, Unit ID, and Firmware Version.

Select Preset

The Select Preset menu item allows for one of 32 preprogrammed presets to be selected for XAP 800 use. To select a preset, scroll through the numbered presets (1–32) until the desired preset is visible, then press Enter to run the preset.

Run Macro

The Run Macro menu item allows you to execute a macro. To select a macro, scroll through the numbered macros (1–255) until the desired macro is visible, then press Enter to run the macro.

Lock Panel

The front panel may be locked to prevent unauthorized adjustments to the XAP 800. To lock the front panel, use the \triangle/∇ buttons to select Lock Panel from the System menu, and press Enter. Lock Panel selections are Off, On, or On at Timeout. Press Enter to enable your selection.

Installation ~ LCD Programming

To unlock the front panel, attempt to adjust a parameter. The XAP 800 will prompt for the passcode. Upon entering the fifth character (if entered correctly), the front panel will unlock. The default passcode for all boxes is ▲▲▼▼Enter.

Set Passcode

Once the XAP 800 is unlocked, the passcode may be changed. Before the XAP 800 will allow passcode changes, the new passcode must be entered, then re-entered to validate the new passcode.

The front panel passcode can also be set (and reset) within G-Ware. See page 26 for more information.

Device

PSR1212

XAP 800

XAP TH2

XAP 400

Menu items can still be scrolled through when the panel is locked. However, settings cannot be entered until the panel is unlocked with appropriate passcode.

Type

5

ID

0-7

0-7

0-F

0-7

Device ID

The XAP 800's device ID is set from this menu. There are eight device ID selections to choose from (0-7). Select the network position you want to use. Within a single site, you must assign different device ID numbers for each XAP 800 unit. See Device IDs, page 12.

U	ni	t	I	\square

The Unit ID menu selection allows you to access the read-only address set at the factory. This unique ID number identifies your particular XAP 800 unit and cannot be changed.

Mixer Mode

This setting allows you to set to master or slave mode. See page 12 for details.

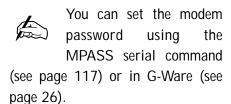
Firmware Version

This menu selection allows you to view which firmware version is being used. This information cannot be changed.

RS-232 menu

There are four submenus under the RS-232 menu: Baud Rate, Flow Control, Enable Modem, and Clear Password.

Baud Rate


This parameter allows you to set the XAP 800's baud rate to 9.6kbps, 19.2kbps, 38.4kbps, or 57.6kbps. Default is 38.4kbps. Select the baud rate you want to use,

ClearOne recommends that you leave Flow Control enabled.

The modem initialization string can only be set via the MINIT serial command (see page 116 or the G-Ware software. It cannot be set through the front panel LCD.

Flow Control (hardware)

The XAP 800 uses the RTS and CTS pins on the RS-232 port to regulate the transmission and reception of data. You can enable or disable flow control on the front panel of unit and select the flow control type in the Site Properties window of G-Ware (see page 23). If you select On (default) from the front panel menu, select Hardware as the flow control type in the Site Properties window. If you disable flow control on the front panel, select None in the Site Properties window. When None is selected, the XAP 800 ignores flow control, making the connected external control device ensure that data is not lost. Software flow control (Xon/Xoff) is supported by the XAP/PSR units and is only used with a pass-through device, such as a modem.

To avoid communication errors, ClearOne strongly recommends that you connect all DB9 pins and enable flow control when connecting to a PC.

Enable Modem

This parameter configures the RS-232 port for connection of a modem. When On is selected, the XAP 800 will send an initialization string to the modem on power-up and require a password before data transfer is allowed through the port. When Off (default) is selected, the password is disabled.

To use the XAP 800 with a modem

- 1. Match the baud rate of the modem to that of the XAP 800.
- 2. Turn off Serial Echo on the modem.
- 3. Turn off the modem's response mode (e.g., no OK messages, ring, etc.).
- 4. Enable auto-answer on the modem.

Clear Password

This parameter allows you to erase the serial port (modem) password in case it has been forgotten. Select Yes to keep the current password or No to erase it. Press Enter to enable your selection.

Meter menu

There are six submenus under the Meter menu: Inputs, Outputs, Processing, ERL, ERLE, and Default Meter. The meter selection determines what is shown on the front panel peak-level LED display. When the meter is selected in the LCD menu tree, the LCD displays peak level indications as well. Use the \triangle and \blacktriangledown buttons to select the Meter menu, then scroll through the options and press Enter when you reach the desired option.

Inputs

Select which input (1–12) you want to monitor on the LCD and LED display. Scroll to the input, then press Enter. The meter displayed is the post-gain meter.

Outputs

This submenu allows you to choose which output (1–12) you want to monitor on the LCD and LED display. Scroll to the output you want to monitor, then press Enter.

Processing

This submenu allows you to choose which processing channel (A–H) you want to monitor on the LCD and LED display. Scroll to the output you want to monitor, then press Enter.

ERL

This submenu allows monitoring of the ERL meters on the XAP 800. Select the meter you want to monitor and press Enter.

ERLE

This submenu allows monitoring of the ERLE meters on the XAP 800. Select the meter you want to monitor and press Enter.

Default Meter

This submenu determines what is displayed on the LED meter when a meter is not specifically selected elsewhere in the Meter menu. The default is Output 12.

The Meter Reference Point diagram on page 19 shows the meter pick-up points (M) in the XAP 800 signal path.

Inputs menu

There are two submenus under the Inputs menu: Mute and Gain. To access these submenus you must first select the input. Choose from Inputs 1–12 or Global. Use the \triangle and \blacktriangledown buttons to select the Inputs menu, then scroll through the options and press Enter when you reach the desired option.

Mute

This submenu allows you to turn mute on or off (default) for the selected input.

Gain

This submenu allows you to adjust the gain for the selected input. Use the \triangle and \blacktriangledown buttons to increase or decrease gain.

Outputs menu

There are two submenus under the Outputs menu: Mute and Gain. To access these submenus you must first select the output. Choose from Outputs 1–12. Use the \triangle and ∇ buttons to select the Outputs menu, then scroll through the options and press Enter when you reach the desired option.

Mute

This submenu allows you to turn mute on or off (default) for the selected output.

Gain

This submenu allows you to adjust the gain for the selected output. Use the \triangle and \blacktriangledown buttons to increase or decrease gain.

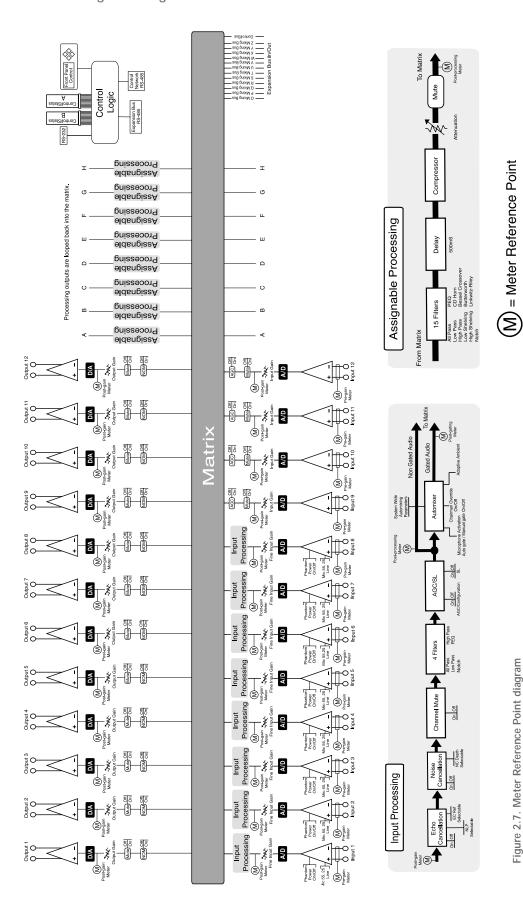


Figure 2.7. Meter Reference Point diagram

CHAPTER 3: System Configuration

ClearOne's G-Ware software provides an easy interface for configuring and controlling your XAP 800. While some configuration can be done using the front panel LCD menus, G-Ware is required to complete the custom configuration of your audio conferencing system. If you are using the default settings, no configuration is necessary.

This chapter describes how to install G-Ware and create a site. It also describes all configurable parameters of your system. These descriptions are designed to be used as a guide as you make adjustments for your particular installation. It is not necessary to configure all parameters.

G-Ware Requirements

ClearOne's G-Ware software requires the following minimum system configuration:

Minimum RAM requirement is determined by the operating system

Windows 95 OSR2 64MB
Windows 98 64MB
Windows ME 64MB
Windows NT 64MB
Windows 2000 128MB
Windows XP 256MB

- PII 200MHz (or AMD Equal) or higher processor
- 8MB Video Card
- 1024x768 (16 bit) High Color monitor
- Internet Explorer 4
- 20MB of free hard disk space
- RS-232 COM port
- CD-ROM drive

Creating Floppy Disk Copies

Depending upon the computer equipment you have available, you might need to install G-Ware software from floppy disks rather than the included CD. To do this, a Disk Copy program is provided in G-Ware that allows you to transfer G-Ware to floppy disks. You will need a PC with a CD-ROM drive to make the transfer. You can access the Disk Copy program in the following ways:

- After installing G-Ware, go to the Windows® Start menu, select Programs, then ClearOne G-Ware, then Create Install Floppy Disks.
 - or -
- In the G-Ware section of the Audio Video Product CD, click on Install Now.
 Choose Create Installation Floppy Disks from the G-Ware setup menu.

Installing G-Ware

To install G-Ware

 Boot the PC to the Windows operating system. Ensure that all other programs or applications are closed. Insert the Audio and Video Products CD into the CD-ROM drive.

If the Autorun feature is enabled on the PC, the ClearOne Welcome window opens. Click the **Software** tab and select **G-Ware**.

If the Autorun window does not open, open the Windows Start menu and choose Run. Type " <drive>:\\clearone.exe" where <drive> is the letter of the CD-ROM drive (e.g., D:\\clearone.exe).

- 2. At the G-Ware window, click Install G-Ware near the bottom of the window.
- 3. The InstallShield Wizard opens, and guides you through the Welcome and License Agreement windows. At the Choose Destination Location window, choose the directory where G-Ware will be installed. We recommend that you use the default directory.
- Click Next or Yes to move to proceed through the windows that follow or No or Cancel to end the installation process.
- 5. Follow the onscreen instructions. You must restart your computer once installation is complete.

The G-Ware Program Folder is now added to your Start menu. You can start G-Ware through the Start menu or by double-clicking the desktop icon.

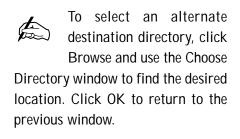


Figure 3.1. Desktop icon

Site Setup

Creating a new site

New site files are created through the Site Properties window in G-Ware. A site file contains all information about a particular installation including all unit settings and properties. It also provides G-Ware with the necessary information to communicate with the site hardware using your PC. Open G-Ware by double clicking the desktop icon or by selecting G-Ware from the Start menu.

Whenever a mouse click is indicated in this manual, it refers to the left mouse button unless otherwise stated.

To create a new site

- 1. Open the Site Properties window by selecting New Site from the File menu or by clicking the New Site button on the toolbar.
- 2. In the Site tab, enter the site name, author, company, location, room, and description, using the Tab key or mouse to select each field.
- 3. Click the **Comm** tab. Select the COM port, baud rate, and flow control you want to use. ClearOne recommends that you leave Flow Control set to Hardware. The Software setting is not supported by XAP/PSR units and is typically used with modems.
- 4. If you plan to use a modem, select **Use Modem** and enter the phone number, initialization string, and reset string.
- 5. Click the **Security** tab. Enter the site password in the **Site Password** box. Click File Access Password to create a password for the Site File.

Figure 3.2. New Site button

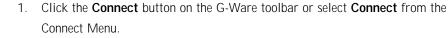
You can enable flow control using the XAP front panel controls. See

page 16.

Figure 3.3. Site Properties, Site tab

Figure 3.4. Site Properties, Comm tab

Figure 3.5. Site Properties, Security tab


Adding a XAP 800

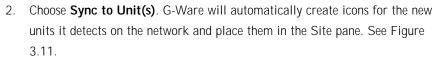


Figure 3.6. Open Site File button

To auto-detect units

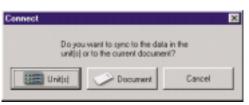


Figure 3.8. Connection choices

Note: When connecting to your site, you can choose to sync to Unit(s) or Document. If you sync to the Unit(s), you will overwrite your G-Ware site file with the current settings of the unit(s). If you sync to the Document, you will overwrite the settings in your units with the settings you have saved in the site file. Choosing to sync to Document will also create icons for any new units.

To manually add units

If you are working offline, click the Add button on the G-Ware toolbar. This opens the Add Unit window.

Figure 3.10. Add Unit window

Select the XAP 800 icon and click Add

Connect button

Configuring Unit Properties

Using the Unit Properties window, you can configure the unit's communication and security properties in addition to general unit properties such as name, type, and country code. The Unit Properties window automatically opens when you manually add a unit to the site. You can also right-click the unit icon in the site pane and click Unit Properties.

To configure Unit Properties

- 1. Type a descriptive **Unit Name** in the space provided. The Unit Identification and Firmware Version will be supplied by the unit when a connection is made.
- If you have already established a connection with the site, the Device
 ID will be assigned. Otherwise, select the **Device ID** that matches the ID you
 assigned the unit via the front-panel LCD menu.
 - Device IDs ensure the software will sync up with the proper unit when there are multiple XAP 800s on a network.
- 3. Select the **Unit Type** (default is slave). See page 12 for more information.
- 4. Select an input, output, or processing channel to be the **Default Meter** on the front panel meter LED when a channel is not specifically selected.
- 5. Select the **Meter Refresh Rate**, which determines how quickly the XAP 800 updates meter information (default is 100ms; range is 50–1000ms).
- Click the **Comm** tab. The Baud Rate and Flow Control settings are supplied by the unit when a connection is made. These settings are changed using the Site Properties window (see page 23).
- 7. Set the **Serial Echo** (default On) and the **Serial Mode** (default Text).

Serial Echo echos back commands sent over the XAP 800 network. The serial mode determines the format in which the commands return—text or binary. The mode defaults to Binary when G-Ware is connected and to Text when disconnected. Contact technical support for instructions on using Binary mode.

Figure 3.11. Unit icons in Site Pane with Unit menu displayed

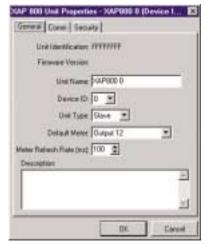


Figure 3.12. Unit Properties, General tab

Figure 3.13. Unit Properties Comm tab

Figure 3.14. Unit Properties Security tab

- 8. If a modem is connected to the XAP 800 unit, select **Use Modem** and enter the initialization string. Click **OK**; the XAP 800 will initialize the modem.
- Click the **Security** tab. Create a modem password. The password will be required before control of the system is allowed. The default modem password is a carriage return.
- Preset/Macro Password enables you to password protect your individual presets and macros. To create a password, click Preset/Macro Password.

Creating a Preset/Macro Password does not automatically lock all presets or macros. Presets are locked in the Preset Configuration Mode. See page 56 for more information. Macros are locked in the Macro Editor. Presets and Macros that are locked do not require the password to be run. However, the password is required to make changes.

- 11. Select the Front Panel Lock Mode.
 - Unlock Panel leaves the front panel controls unlocked.
 - Lock Panel locks the front panel immediately.
 - Lock When Timeout locks the front panel after it is inactive for the specified number of minutes. The range is from 0–15 minutes; 5 minutes is the default.

When locked, the front panel can be accessed only after entering the proper passcode (sequence of button presses) or by unlocking the panel using G-Ware.

12. To create a passcode for the front panel, click Clear to clear the default sequence. Then click any sequence of the five front panel buttons. Your choices will be displayed in the column on the right. When you are finished, click OK to enable your selections.

You will need to repeat these steps for all XAP 800 units on your network.

G-Ware Screens

G-Ware has three modes: Configuration, Preset, and Macro Recorder. Configuration is used to configure the unit and is the default mode. The Preset and Macro modes are discussed in Chapter 4: Advanced Configuration. You can switch between modes by clicking on the corresponding toolbar button. The current mode is displayed on the status bar.

Figure 3.15.
Configuration, Preset, and Macro toolbar buttons.

There are two main configuration screens, the Flow Screen and the Matrix Screen. All unit configuration and audio routing is accessed through these screens.

Flow Screen

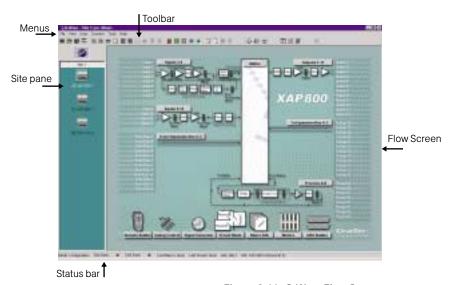


Figure 3.16. G-Ware Flow Screen

The G-Ware Flow Screen is the main access window for G-Ware's features and functions. Using the menus and toolbar at the top of the screen, you can access general configuration windows. Unit specific configurations are accessed through the buttons and labels on the Flow Screen itself. If you have multiple units, click on the unit icon in the Site pane to access that particular unit's Flow Screen.

The Flow Screen shows a detailed block diagram of the path of the audio signal, presenting a graphical explanation of each stage of audio processing. Mic and line inputs, outputs, expansion buses, and processing block configuration windows can all be accessed from this screen. The XAP 800 Flow Screen has seven icons and buttons at the bottom of the Flow Screen which open the following unit programs: Remote Builder, Gating Control, Signal Generator, Preset Mode, Macro Editor, Meters, and GPIO Builder.

Figure 3.17. Unit shortcut menu

Figure 3.18. Inputs 1–8 shortcut menu

Figure 3.19. Safety Mute

Copying and pasting settings

G-Ware has shortcut menus which appear when you right-click a selection or program window in G-Ware. These shortcut menus provide quick access to options such as Print, Copy, and Paste that pertain only to that selection or screen region. Using the Copy and Paste commands, you can copy and paste unit data such as a single setting or the entire unit's settings depending on which window you are in. For example, if you are in the Inputs 1–8 window, using the shortcut menu will allow you to copy and paste all of the input settings to other inputs. You can also use keyboard shortcuts (Ctrl+C and Ctrl+V) to copy and paste settings. If you want to apply all settings of a selected input to the rest of the inputs, select Apply to All.

Safety Mute

The Safety Mute feature in G-Ware enables you to mute all outputs if feedback or audio problems occur during the configuration process. To use Safety Mute, click the Safety Mute button on the G-Ware toolbar. Then find and correct the cause of the problem. Click the Safety Mute button again to unmute the outputs.

Status bar

There are two status lights at the bottom of the G-Ware window representing the unit and the site. The lights illuminate in various colors to indicate current status.

- **Solid green.** The item being configured is synchronized with the hardware.
- Solid red. The information being configured is saved in the software offline.
- **Flashing red.** The information is not saved or there is no hardware connection.
- Solid yellow. Communications are pending.
- Flashing yellow. There is a communication error. In this instance, you should
 disconnect from the unit and reconnect. The Message Log will indicate the error
 that occurred. See page 75 for more information.

Matrix Screen

The Matrix Screen is used to route audio to one or more destinations (outputs, expansion bus, or processing). Any number of connections to outputs can be made in the matrix. The Matrix Screen can also be used to access the Input, Output, and Processing configuration windows by clicking on the buttons along the top and left sides of the routing matrix.

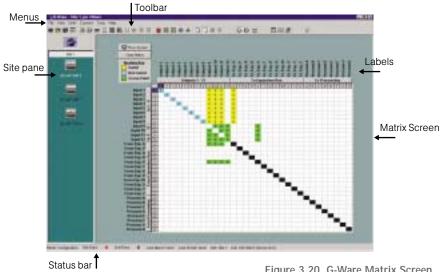


Figure 3.20. G-Ware Matrix Screen

A colored cell in the routing matrix marks the intersection or cross point of the routing from input to output. The color of the cross point cell identifies the input type: yellow = gated mic input, blue = non-gated mic input, and green = all other inputs. The amount of attenuation is also shown in the cross point cell. Black cell are restricted routing paths which prevent E-bus and Processing channels from being routed back to themselves.

The numbers and letters along the top and left side of the matrix show the cross point coordinates. The input number or letter and the output number or letter will be highlighted blue for the selected cross point.

All inputs and outputs are labeled to make it easier to identify channels. Clicking on a label will open a labels window where you can change the channel labels.

Audio Routing

Audio is routed in the Matrix Screen (see Figure 3.20 on previous page). To access the Matrix Screen, click on the Matrix button on the Flow Screen. To return to the Flow Screen, click the Flow Screen button.

The XAP 800 routing matrix has 32 possible input sources and 32 output destinations, with level control at each cross point. Any input or combination of inputs can be routed to any output or any combination of outputs. To clear the matrix, click the Clear Matrix button located above the Routing Key.

To route an input, click in the routing matrix at the intersection between the input and the output. A mic input can be designated as gated (yellow) or non-gated (blue) by clicking repeatedly in the cross point. All other input cross points will be colored green.

Expansion bus O–Z routing

Audio on any XAP unit in the E-bus network can be placed on the bus or taken off the bus and routed to any destination within the unit. The XAP 800 has 12 digital mix-minus buses:

- O-R buses are defaulted as the mic mix buses and can communicate the NOM count. Gated mics are default routed to the O bus.
- S–Z buses are defaulted as the auxiliary mix buses. They are used to carry auxiliary audio such as that from codecs and XAP TH2s. These buses are used as mic mix buses when NOM count is not required.

Process A-H routing

There are eight processing blocks on the XAP 800 (Processing A–H). With these processing channels, you can apply filters, EQ, or other processing settings to an input or a group of inputs which can then be routed to a single output or group of outputs. See page 49 for more information on processing settings.

Cross point attenuation

Right-click on a cross point to open the Cross Point shortcut menu. Click Cross Point Enter to open the Cross Point Attenuation Dial window.

Click the ▲ and ▼ buttons or click on the green indicator and rotate the dial with the mouse to adjust the attenuation to the desired level (or enter the

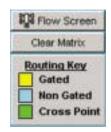


Figure 3.21. Matrix Routing Key

If you click the Clear Matrix button, you will clear all cross points in the routing matrix.

Figure 3.22. Cross Point shortcut menu

numerical value directly in the window). The attenuation range is from 0 to -60dB. Click Close to exit. Note that the level control you have selected for the cross point is indicated numerically in the cross point cell.

The Cross Point shortcut menu also allows you to copy and paste the current Cross Point configuration, including attenuation, to other cross points. You can copy a single cell or the entire matrix using the shortcut menu options. To copy and paste a cross point to multiple cross points, press Ctrl+C to copy (or right-mouse click). Then press Ctrl+V while holding down the left-mouse button and drag the mouse over the cross points to which you want to copy the settings.

Figure 3.23. Cross Point window

Matrix report

When you finish audio routing, you can print a detailed report of the matrix using the Print Matrix option on the shortcut menu (see Figure 3.22).

The Print Matrix Report window displays all matrix routing and cross point information. Click the Print icon button to print the report.

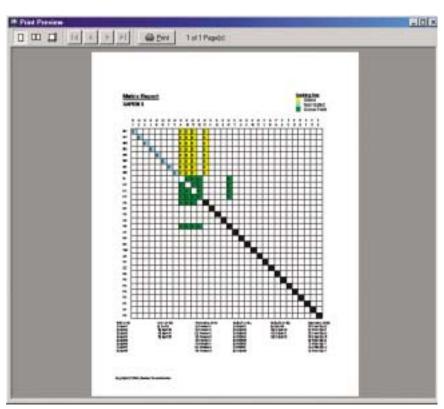


Figure 3.24. Matrix Report window

Inputs and Outputs

mute

microphones.

Inputs 1–8 accept either microphone (-55, -25dB) or line level (OdB) inputs.

ClearOne

provided

ClearOne Technical Services.

Inputs 1-8

To open the Inputs 1–8 configuration window, click the Inputs 1–8 button on the Flow Screen. The In 1–8 button on the Matrix Screen will also open this window. These inputs are balanced and support both mic and line levels.

Figure 3.25. Inputs 1-8 configuration window

To select an input channel, click a blank area in the input pane. If you click on the input label, a secondary window will open allowing you to rename the input. The background color for the selected input channel will be light gray. The many configurable properties of mic inputs are defined in this section.

recommends

some

muting

using the XAP to mute mics instead of using the

External

devices limit the effectiveness of Gentner D.E.C. To use the mute button on a microphone, contact

by

Mute

Mute mutes the input channel. The light on the button illuminates red when Mute is activated. Default is Off (unmuted).

AGC/SL

AGC/SL opens the Automatic Gain Control/Speech Leveler window. If Speech Leveler or AGC is enabled, the light on the button illuminates green. Default for both is off.

The **Speech Leveler** is a compander that is optimized for speech audio. It quickly equalizes the difference in speech levels in the room without bringing up noise. If you use AGC with the Speech Leveler, set the AGC Response Time to >2 seconds.

AGC adjusts softer and louder input audio to a consistent level that you select (the target level). The target level range is from -30 to 20dB in 1dB steps. The default target level is OdB.

Set the Target Level first, then apply the amount of maximum gain that you want the AGC to apply to the signal. Maximum gain range is 0 to 18dB in 1dB steps. The default value is 18dB. AGC occurs after the gain and filter settings in the audio signal path.

The **Active Gain** meter reflects the overall gain at any given moment. Click the white box next to the meter to enable it.

The **Response Time** adjustment determines the total AGC engage/disengage response time. The Threshold determines the decibel level at which you want the AGC to engage. Setting the threshold toward the higher end of the scale (near 0) reduces background noise to a greater degree. The Response Time is measured in milliseconds. Target Level and Threshold are both RMS.

P Pwr (Phantom Power)

Phantom Power toggles the phantom power on and off. Phantom power is an auxiliary power source to power certain types of microphones. The XAP 800's phantom power voltage is 24VDC. Default is On.

AFC

AEC opens the Acoustic Echo Canceller window. To enable the acoustic echo canceller, click Enabled, then select the reference. Any one of the 12 outputs, four expansion bus references, or four virtual references can be selected.

PA Adapt and AEC Reference

If you select an expansion bus reference, the Define PA Adapt/AEC Expansion Bus Ref window opens so you can identify which expansion bus output you want to use as the AEC's reference. You can also open this window from the toolbar.

Figure 3.27. Define PA/AEC window and toolbar button

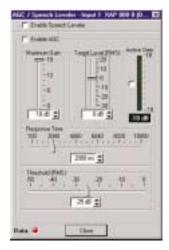


Figure 3.26. AGC/Speech Leveler window

All meters in G-Ware are peak meters. The target level and threshold controls in the AGC/SL window reflect RMS values.

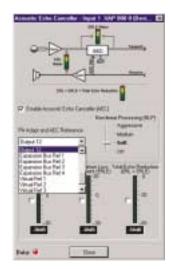


Figure 3.28. AEC window

Figure 3.29. Virtual Reference toolbar button

If you select a **virtual echo cancellation reference**, the Virtual Reference window will open. You can also open this window from the G-Ware toolbar.

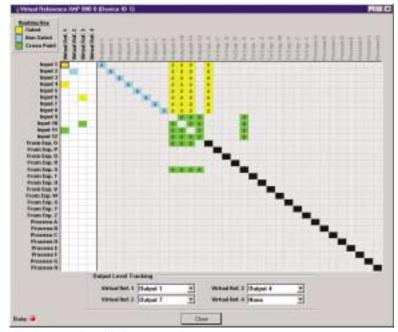


Figure 3.30. Virtual Reference window.

Use this window to select which signals will be used by the four Virtual Reference points. The routing matrix portion of this window cannot be edited. Virtual references are used when you need to reference multiple outputs. For example, if you have stereo outputs (L, R) near a block of mics, you would want the mics' echo canceller to reference both the left and right outputs. By using a virtual reference, the echo canceller will be able to reference both signals. This means you don't need to use a dedicated output to combine signals.

Or, you may have mics routed to the PA output but you don't want the echo canceller to reference this audio. By using a virtual reference, the echo canceller can sample all signals routed to the PA output, minus the mic signals.

To create a virtual reference

- 1. Select the input signals you want included in each virtual reference by clicking the cross points.
- Because AEC requires a physical output reference to track output gain changes, you need to select an output reference for AEC to function properly with a virtual reference. Use the lists at the bottom of the window to select which output you want AEC to use to track gain changes.
- 3. Click **Close** to exit the window.

Non-linear Processing (NLP)

The Non-linear Processing (NLP) feature increases the power of echo cancellation for difficult acoustical environments. NLP features four settings: Soft (6dB), Medium (12dB), Aggressive (18dB), and Off. Use NLP with care; corresponding trade-offs can include suppression and half-duplex operation. Default is Soft.

Meters

The Echo Return Loss (ERL) meter on the Acoustic Echo Canceller window shows the coupling between the reference signal and the input to the echo canceller—the ratio of the two levels. It is an average meter that updates only when a signal is present.

The Echo Return Loss Enhancement (ERLE) meter shows the loss through the echo cancellation and non-linear processing chain—the ratio of the two levels. It is an average meter that updates only when a signal is present.

The Total Echo Reduction meter shows the total ERL and ERLE reduction, in decibels. It is an average meter that updates only when a signal is present.

NC

The NC button on the selected input in the Inputs 1–8 window opens the Noise Canceller window. The noise canceller reduces ambient noise in the signal with no noticeable degradation in signal quality.

To use noise cancellation, click Enable Noise Canceller, then adjust the Cancellation Depth to the setting which provides the best combination of low noise and maximum speech clarity. The attenuation depth can be set in 1dB increments from 6dB to 15dB. Default is 6dB.

The noise canceller default is Off. When noise cancellation is enabled, the light on the NC button illuminates green.

Filters

The Filter button on the selected input in the Inputs 1–8 window opens the Filter Graph setup window. Each mic/line input has four configurable filters that can be used as filters or equalizers. By default, they are not enabled and the filter types are not defined. Below is a description of each feature in the window.

Active Filter

Active Filter selects among filters on the graph. Note that no filters exist until you click Add Filter (see Figure 3.32) to add filters to the graph.

Figure 3.31. Noise Canceller window

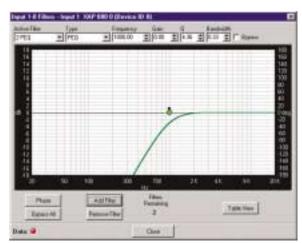


Figure 3.32. Inputs 1-8 Filters window

Type

Use the Type list to select from the following input filters: All Pass, High Pass, Low Pass, Notch, and PEQ. G-Ware features other filters which are configured in the Processing section of the software (see page 49).

- **All Pass.** Frequency range is 20Hz to 20kHz with resolution to 1Hz or four places (whichever is larger).
- High Pass. Selectable frequency cutoff is 20Hz to 20kHz, in 1Hz increments. Rolloff is 12dB/octave. Level is fixed at 0dB.
- Low Pass. Selectable frequency cutoff is 20Hz to 20kHz in 1Hz increments. Rolloff is 12dB/octave. Level is fixed at 0dB.
- Notch. Center frequency range is 20Hz to 20kHz with resolution to 1Hz or four places (whichever is larger). Bandwidth is from .05 to 5 octaves in .01 octave increments. Level is fixed at -80dB.
- **PEQ (parametric equalizer).** Center frequency range is 20Hz to 20kHz with resolution to 1Hz or 4 places (whichever is larger). Bandwidth is .05 to 5 octaves in .01 octave increments. Level range is -15 to +15dB in 0.5dB increments.

Frequency. Use Frequency to select the center frequency (in Hertz) for the filter you are configuring. Range is from 20Hz to 20kHz. Default is 1kHz.

Gain. Gain adjusts the gain value from -18 to 18dB, in .5dB steps. Default is 0dB.

Q, or Quality factor. Q, or Quality factor, selects the ratio of the center frequency divided by the bandwidth. Q reflects an inverse relationship to the bandwidth, and adjusts from .02:1 to 40:1 on the XAP 800.

Bandwidth. Bandwidth establishes the difference between the upper and lower points of a filter's audio passband.

Bypass. The Bypass box, when selected, bypasses the selected filter.

Phase. Phase generates—on the graph—the phase relationship of the graphed frequency response.

Bypass All. Bypass All bypasses all filters.

Add Filter. Add Filter adds a filter to the graph, centered at 1kHz and 0dB.

Remove Filter. Remove Filter removes the selected filter from the graph.

Table View

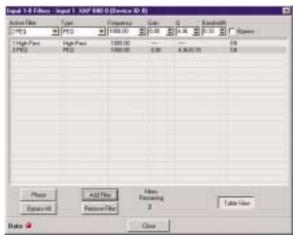


Figure 3.33. Filter Graph window, table view

Table View toggles between the Graph and the Table views of the Inputs 1-8 Filter window. The Table view displays the selected filter settings in table format. You can configure filters from this view as well as in the graph view.

To configure filters

1. In either the graph or table view, select the filter type from the **Type** list.

Note that the configurable filter parameters displayed depend on the selected filter type.

- 2. Click **Add Filter** to add a filter to the graph or table.
- Configure filter parameters using the previously described lists. If you are using the graph view, you can click on the node and drag it to the location you desire on the graph.
- 4. Click Close to exit.

Figure 3.34. Gate window

Gate

The XAP 800 has unique gating parameters which control microphone activation. The Gate button on the selected input in Inputs 1–8 window opens the Gate configuration window where you can establish the gating parameters for the input.

Activation

There are three mic activation settings: Auto Gate, Manual On, and Manual Off.

- Auto Gate determines mic gating based on the input level and gating settings
 for the gating group the input is assigned to. It contributes to and is affected
 by all gating group settings such as NOM, chairman override, etc.
- Manual On activates a mic, provided it does not exceed max NOM requirements of the gating group that the input is assigned to. It is included in the NOM count.
- Manual Off deactivates a mic.

Chairman Override

Chairman Override provides gating priority for this mic input over any other mic input within the same gating control (mixer) groups. When a mic with Chairman Override enabled gates on, all mics which don't have Chairman Override enabled will gate off. Default is off.

Adaptive Ambient

Adaptive Ambient adjusts the ambient reference level as noise and room conditions change. When adaptive ambient is on, the mic channel monitors the ambient noise level on the input and adjusts the ambient level reference automatically. This means that the gate threshold level automatically increases or decreases based on background noise. If Adaptive Ambient is turned off, the input will use the fixed ambient level specified in the Ambient Level box as its gating reference. Default is on.

PA Adaptive Mode

PA Adaptive Mode uses loudspeaker audio level on a specified output as the new ambient level when audio is present at the power amplifier. This prevents loudspeaker audio from gating on the mic, while still allowing people in the room to gate on microphones as they speak—provided that their voices are louder than the loudspeaker audio. For example, you might decide to play background music from a CD player during a presentation. PA Adapt Mode allows you to use the output routed from the CD player as the ambient reference to prevent the CD player's audio from gating on microphones. An output must be specified as the PA Adaptive Reference (this is the same as the AEC reference) for each mic in the system. Default is on.

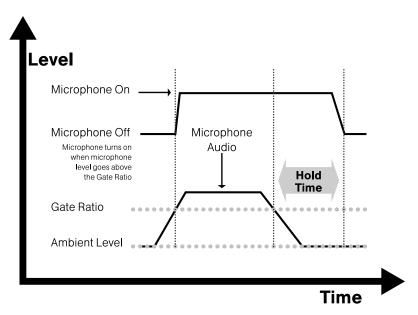


Figure 3.35. XAP 800 automixing gate functions

Gate Ratio

Gate Ratio specifies how much louder the audio level must be above the ambient level before the channel gates on. The gate ratio range is from 0 to 50dB. Default is 15dB.

Hold Time

Hold Time determines how long the channel stays gated on after the audio is below the threshold. The hold time range is from .1 to 8.0 seconds. Default is .3 seconds.

Off Attenuation

Off Attenuation sets the amount of level reduction applied to a channel when it is gated off. The range is from 0 to 50dB. Default is 12dB.

Ambient Level

Ambient Level is available only if the Adaptive Ambient feature isn't enabled. Use Ambient Level if you want to specify a fixed reference point rather than one that adjusts for background noise. The range is from -80 to OdB. Default is Off.

Decay Rate

Decay Rate determines how fast a channel gates off after the hold time expires. Default is Medium.

The PA Adapt Reference and AEC Reference are the same for each channel. If you change the PA Adapt Reference for a channel, you will also make the same change to that channel's AEC Reference.

PA Adapt and AEC Reference

When using either the PA Adaptive mode (see page 38) or Acoustic Echo Cancellation (see page 33), the output that carries this information, i.e. the reference output, must be defined. Select the PA Adapt and AEC Reference from the drop-down list. Any one of the 12 outputs, four expansion bus references, or four virtual references can be selected.

If you select an **expansion bus reference**, the Define PA Adapt/AEC Expansion Bus Ref window opens so you can identify which expansion bus output you want to use as the PA reference. You can also open this window from the toolbar.

Figure 3.36. PA Adapt/AEC window and toolbar button

Figure 3.37.
Virtual Reference toolbar button

If you select a **virtual echo cancellation reference point**, the Virtual Reference window will open. This window allows you to select which signals will be used by the four virtual reference points. Virtual references are used when you need to reference multiple outputs. The routing matrix portion of this window can not be edited. You can also open this window from the G-Ware toolbar.

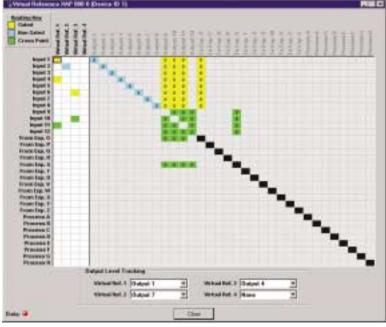


Figure 3.38. Virtual Reference window.

Gating Group Select

In addition to specifying gating characteristics for each mic input, you can assign the inputs to a gating group for greater flexibility and control. When inputs are assigned to a gating group, the gating information from the inputs is used to control how the entire mixer behaves.

The XAP 800 features four internal gating groups (Internal 1–4) and four global gating groups across the expansion bus (Global A–D). Microphones can only be used in one gating group at a time. If an input is not assigned to a gating group, that mic's gate properties are independent and have no effect on any other gating group. When gating groups span two or more units (global gating groups), the settings must be the same for each unit attached to the global gating group. Mic inputs are routed to Global Group A by default.

To assign a gating group

 Select the Internal or Global group the mic input will belong to or select None.

To configure gating group settings

 Click the Gating Control button on the toolbar. This opens the Gating Controls window.

Figure 3.41. Gating Controls window

2. Select the Max # of Mics (default is 4).

This sets the maximum number of microphones that can be gated on at any one time within a gating group. For internal groups, the maximum number of mics can be from 1 to 8. For global groups the maximum number of mics will vary depending on how many mic inputs are assigned to the gating group (up to 64). You can also select AII for the global groups—which means all mics could gate on.

Figure 3.39. Gating Group Select pane

Figure 3.40. Gating Control button

3. Leave **1st Mic Priority** selected (default) to enable this feature; otherwise, clear the selection to disable it. ClearOne recommends leaving this setting on.

This setting helps maintain maximum audio intelligibility by allowing only one mic to gate on to a participant's voice. 1st Mic Priority allows more than one microphone to be activated at the same time—it simply restricts mics from gating on to the same audio source. It does this by determining the audio level received by all mics when the first mic is gated on. This audio level is then used as the ambient level for the gating group. If this feature is disabled, usually two or more microphones gate on when only one person speaks.

4. Select last-mic operation from the Last Mic Mode list. There are two options for Internal groups: Last On and Off. If you are configuring Global groups, you can select from the mic inputs assigned to the Global group in addition to Last On and Off.

Last On leaves the mic that was activated last full on until another mic input is gated on. The Input setting allows you to select which mic input the XAP 800 leaves on when all mics gate off. If Off is selected, all mics will gate off when no audio is present. It is preferable in most applications to leave a mic on so the remote participants don't think they have lost their audio connection. Off is typically only used when you are conferencing multiple sites and need to reduce background noise.

5. Click the Gating Group label to change the group names.

Gain

The Coarse and Fine sliders on the selected input on the Inputs 1–8 window are used to match the level settings for microphone inputs and to adjust input volume level.

- Set the Coarse gain to 55dB for a mic input, 25dB for active equipment that requires an input between mic and line level, or OdB for a line level input.
- Use the Fine gain slider to adjust input volume level. You can also enter the level directly in the 0.0dB box.

Min/Max limits

Use the yellow and blue upper and lower limit arrows on the Fine gain scale to create minimum and maximum gain level limits. These limits only apply when using relative gain commands; absolute gain commands can exceed the min and max limits. Min/Max limits apply to all serially connected control devices and prevent users from adjusting levels beyond the min/max levels, provided relative gain commands are used.

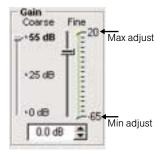


Figure 3.42. Gain adjustment

Optimizing input gain structure

How you adjust an input's gain directly affects sound quality. The optimal input gain setting is one which is adjusted as high as possible above the noise floor without introducing clipping. Clipping can cause distortion which can damage amplifiers and loudspeakers.

To adjust the input level properly, place a signal on the input at the maximum level it will generate. Adjust the input gain until the peak level of the input, as shown on the Input meter, just begins to enter the red (clipping) zone, then reduce the gain slightly until peaks no longer climb into the red zone. This setting will ensure that the XAP 800 maximizes the signal-to-noise ratio without clipping the signal.

Meters

There are four meters on each mic/line input to assist with setup and level control. Select the meter check box to enable the meter. All input meters are peak-level.

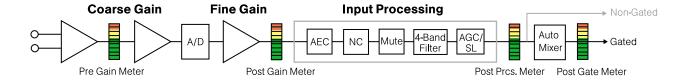


Figure 3.43 Meter locations in the Inputs 1-8 signal path

Pre Gain

Pre Gain meter indicates the input's level before gain adjustments. Meter range is from -85 to -35dB when 55dB gain is selected; -55 to -5dB when 25dB gain is selected; and -65 to 20dB when 0dB gain is selected.

Post Gain

Post Gain meter shows the input's level after gain adjustments have been made. Meter range is from -30 to +20dB.

Post Processing

Post Processing meter indicates the level at the gating point after the signal has passed through input processing. It reflects the post-AGC signal. Meter range is from -30 to +20 dB.

Post Gating

Post Gating meter shows audio level after it has passed through the gating parameters. Meter range is from -30 to +20dB.

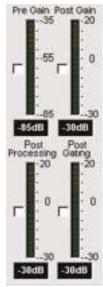
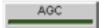


Figure 3.44. Mic input meters

Inputs 9-12

The XAP 800 supports 4 line level only inputs for auxiliary audio sources such as video codecs and CD players. To open the Inputs 9–12 configuration window, click the Inputs 9–12 button on the Flow Screen. The In 9–12 button on the Matrix Screen will also open this window. These non-gated inputs are balanced. The nominal input level is OdBu.




Figure 3.45. Inputs 9-12 Configuration window

To select an input channel, click a blank area in the input pane. If you click on the input label, a secondary window will open allowing you to rename the input. The background color for the selected input channel will be light gray. The configurable properties of these inputs are defined in this section.

Mute

Mute mutes the input channel. The light on the button illuminates red when Mute is activated. Default is off (unmuted).

AGC

AGC opens the AGC window. The AGC window has the same parameters as the AGC/SL window with the exception of Enable Speech Leveler. See page 32. The button light illuminates green when AGC is enabled.

System Configuration ~ Inputs and Outputs

45

Gain

The Gain slider on the selected input in the Inputs 9–12 window is used to adjust input volume level.

• Use the Gain slider to adjust input volume level. You can also enter the level directly in the decibel box below the gain scale.

Min/Max limits

Use the yellow and blue upper and lower limit arrows on the Gain scale to create minimum and maximum gain level limits. These limits only apply when using relative gain commands; absolute gain commands can exceed the min and max limits. Min/Max limits apply to all serially connected control devices and prevent users from adjusting levels beyond the min/max levels, provided relative gain commands are used.

Optimizing input gain structure

How you adjust an input's gain directly affects sound quality. The optimal input gain setting is one which is adjusted as high as possible above the noise floor without introducing clipping. Clipping can cause distortion which can damage amplifiers and loudspeakers.

To adjust the input level properly, place a signal on the input at the maximum level it will generate. Adjust the input gain until the peak level of the input, as shown on the Post Gain meter, just begins to enter the red (clipping) zone, then reduce the gain slightly until peaks no longer climb into the red zone. This setting will ensure that the XAP 800 maximizes the signal-to-noise ratio without clipping the signal.

Meters

Pre Gain

Pre Gain meter indicates the input's level before gain adjustments have been made. Meter range is from -30 to +20dB.

Post Gain

Post Gain meter shows the input's level after gain adjustments have been made. Meter range is from -30 to +20dB.

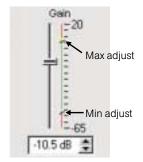


Figure 3.46. Gain adjust on line level input



Figure 3.47. Gain meters

Outputs 1–12

The XAP 800 has 12 line level outputs for sending audio to video codecs, recorders, or amplifiers. To open the Outputs 1–12 configuration window, click the Outputs 1–12 button on the Flow Screen. The Outputs 1–12 button on the Matrix Screen will also open this window.

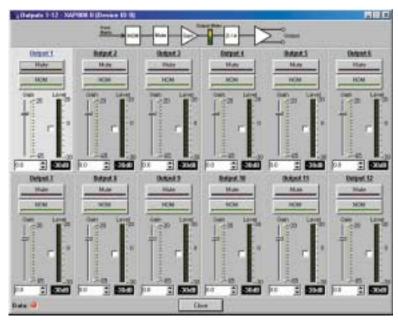
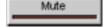
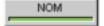



Figure 3.48. Outputs 1-12 configuration window


These line level outputs are balanced. The nominal output level is OdBu. The outputs can adjust from -65 to 20dBu.

To select an output channel, click a blank area in the output pane. If you click on the output label, a secondary window will open allowing you to rename the output. The background color for the selected output channel will be light gray. The configurable properties of these outputs are defined in this section.

Mute

Mute mutes the output channel. The light on the button illuminates red when Mute is activated. Default is off (unmuted).

NOM

NOM (constant gain) maintains a constant output level as inputs routed to the output are gated on and off. The XAP 800 reduces the output gain (at the output) for mics based on the number of mics gated on and routed to that output. When using NOM over the expansion bus, only the first four audio channels (O, P, Q, and R) support

System Configuration ~ Inputs and Outputs

passing NOM information. Enable **NOM** if you want to place this output in a constant gain mode. Default is on. When enabled, the NOM button light illuminates green.

Gain

The Gain slider on the selected output in the Outputs 1–12 window is used to adjust output gain level.

 Use the Gain slider to adjust output volume level. You can also enter the level directly in the 0.0dB box. If you select any level below -60dB, the signal will be muted. The Level meter, when enabled, shows the signal level when a signal is present.

Max adjust Min adjust

Figure 3.49.
Output gain adjust

Min/Max limits

Use the yellow and blue upper and lower limit arrows on the Gain scale to create minimum and maximum gain level limits. These limits only apply when using relative gain commands; absolute gain commands can exceed the min and max limits. Min/Max limits apply to all serially connected control devices and prevent users from adjusting levels beyond the min/max levels, provided relative gain commands are used.

Optimizing output gain structure

How you adjust an output's gain directly affects sound quality. The optimal output gain setting is one which is adjusted as high as possible above the noise floor without introducing clipping. Clipping can cause distortion which can damage amplifiers and loudspeakers.

To adjust the output level properly, place a signal on the output at the maximum level it will generate. Adjust the output gain until the peak level of the input, as shown on the Level meter, just begins to enter the red (clipping) zone, then reduce the gain slightly until peaks no longer climb into the red zone. This setting will ensure that the XAP 800 maximizes the signal-to-noise ratio without clipping the signal.

Expansion Buses

Routing of audio to the expansion buses is done in the Matrix Screen. See page 30. For information on setting up an expansion bus network, see page 11.

From Expansion Bus O–Z

Click the From Expansion Bus O–Z button on the Flow Screen to open the From Expansion Bus Labels window. You can also access this window from the Matrix Screen.

Figure 3.50. From Expansion Bus Labels window

 Enter the names you want to use for each expansion bus, then click OK to save the information and close the window.

To Expansion Bus O–Z

Click the To Expansion Bus O–Z button on the Flow Screen to open the To Expansion Bus Labels window. You can also access this window from the Matrix Screen.

Figure 3.51. To Expansion Bus Labels window

 Enter the names you want to use for each expansion bus, then click OK to save the information and close the window.

Processing

Processing A-H

There are eight processing blocks in the XAP 800, each with filters, compressors, and delay to provide pinpoint audio configurations. To open the Processing configuration window, click the Processing A-H button on the Flow Screen. The To and From Processing buttons on the Matrix Screen will also open this window.

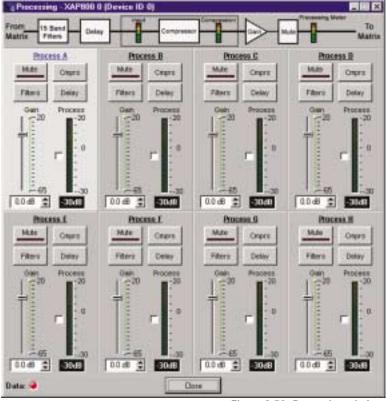


Figure 3.52. Processing window

To select a processing block, click a blank area in the Process pane. If you click on the Process label, a secondary window will open allowing you to rename the processing block. The background color for the selected processor will be light gray. The configurable properties of these processors are defined in this section.

Mute

Mute mutes the processor. The light on the button illuminates red when Mute is activated. Default is off (unmuted).

ClearOne recommends using the XAP to mute mics instead of using the mute provided by some External microphones. muting devices limit the effectiveness of Gentner D.E.C. To use the mute button on a microphone, contact ClearOne Technical Services.

Cmprs (compressor)

Cmprs opens the Compressor Setup window (see Figure 3.53). With the compressor you can change the gain transfer characteristics of the signal path and control the dynamics of a signal.

When the signal exceeds the threshold level, gain reduction occurs at the rate specified by the reduction ratio. The attack time determines how aggressively the compressor reacts to increases in level. The release time controls how aggressively the compressor reacts to reductions in level. Select the Enable Compressor check box to activate the compressor.

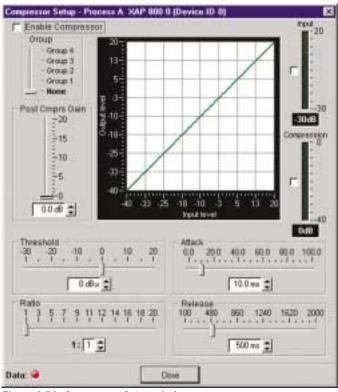


Figure 3.53. Compressor Setup window

Group

Use the slider to assign this compressor to a compressor group. The default is None. When you assign a compressor to a compressor group—such as a group of three, configured for bass, midrange, and treble—the compressors will monitor each other. When one compressor channel compresses, all compressors in the group compress together. When configured properly, this results in a smooth audio response throughout the frequency range, with no bass, midrange, or treble dropouts. A given compressor group must be configured for a single XAP 800 unit; a group cannot use compressors from multiple XAP 800 units.

Compressors and compressor groups can be established only within the XAP 800 unit being configured, i.e., they cannot be configured from a single point across multiple units.

Post Compressor Gain Adjust the compressor gain with the gain slider or by using the \triangle and ∇ buttons. The graph reflects the input/output decibel levels with the gain setting you select.

Threshold Threshold determines the RMS level at which the compressor begins to operate. The range is from -30 to +20dBu. Default is 0dBu.

Ratio Ratio changes the rate of compression applied to the input signal as the signal exceeds the threshold level. The range is 1:1 to 1:20dB. Default is 1:1.

Attack Attack determines how quickly compression is enabled. It is calibrated in milliseconds. The range is 0 to 100ms in .5ms steps. Default is 10ms.

Release Release determines how quickly compression is disabled. The range is 100ms to 2 seconds, in 5ms increments. Default is 500ms.

Input meter This peak meter shows the level of the signal as it enters the compressor.

Compression meter This peak meter shows the instantaneous compression value at a given time.

Filters

The Filter button on the selected Processing channel opens the Processing Filters window. Here, you can configure all filters available in G-Ware: All Pass, Bessel, Butterworth, CD Horn, High Pass, High Shelving, Linkwitz-Riley, Low Pass, Low Shelving, Notch, and PEQ.

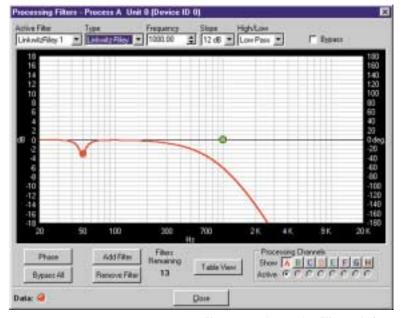


Figure 3.54. Processing Filters window

The frequency response and phase vs. frequency of the total transfer function of all filters is displayed in the window. Each filter can be disabled without affecting the filter settings. All filters can also be disabled using a single command. By default, they are not enabled and the filter types are not defined. Below is a description of each feature in the window.

Active Filter

The Active Filter displays the filter that is applied to the processing channel.

Type

Select the filter type from the Type list. Note that the configurable filter parameters displayed depend on the selected filter type. You can use these parameters to customize the filter, or use the mouse to click and drag the node on the graph to a location that reflects the changes you want to make.

You can continue to add filters to the graph, and track their relationships to each other to design a system with the sound characteristics necessary for good audio.

Phase

Phase plots the phase response of the frequency response of the selected filter.

Bypass

Bypass All bypasses all filters.

Add Filter

Add Filter adds a filter to the graph.

Remove Filter

This removes the selected filter from the graph.

Table View

Table View toggles between the graph view and the table view. The table view allows you to configure filters in a table format rather than on the graph, and provides an easy way to check filter status.

Processing Channels

The Processing Channels section allows you to display the graphs of various processing channels together, so you can view and easily modify filter and equalizer settings throughout the frequency range. Click the respective letter to place a processor in the graph. Click the Active processor you want to modify; it appears in bold on the graph.

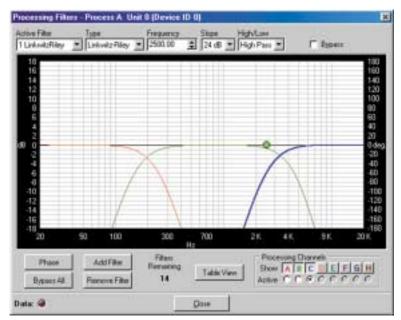


Figure 3.55. Low/Mid/High Loudspeaker Driver configuration

Refer to the figure above. Note that as you create filters across several processing channels, you can observe their crossover points and general shape of the frequency response. In this case, several Linkwitz-Riley filters are being created across three processing channels to establish a balanced frequency response from low-frequency, midrange, and high-frequency transducers.

Delay

Click Delay to open the Delay configuration window. Delay calibrates the amount of signal delay introduced, based on the length (the distance between the source and audience) and temperature you enter.

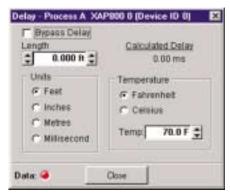


Figure 3.56. Delay window

For example, different speaker drivers within a speaker enclosure might be located different distances from the listening area because of design constraints within the box. You can set up to 500ms of delay.

If you don't want delay added to the signal, select the Bypass Delay box.

Calculated The Delay reading reflects any changes you make in the distance and temperature fields.

Introducing an appropriate amount of delay to the forward-mounted driver(s) re-establishes the acoustical alignment necessary for proper sound imaging in a room. The same principle of introducing delay applies to separate speaker enclosures located various distances from the listening area.

Other types of delay to consider when establishing delay parameters are delays which occur naturally as a result of processing operations within the XAP 800. Propagation delay is an example. This delay is caused by operations such as the conversion of the signal between analog and digital formats.

When you are finished making changes in the Delay window, click Close to return to the Processor window.

Gain

Gain establishes the gain level for this channel. Select a level between -65 and 20dB. If you select any level below -60dB, the signal will be muted. The **Process** meter, when enabled, shows the signal level when a signal is present.

Min/Max limits

Use the yellow and blue upper and lower limit arrows on the Gain scale to create minimum and maximum gain level limits. These limits only apply when using relative gain commands; absolute gain commands can exceed the min and max limits. Min/Max limits apply to all serially connected control devices and prevent users from adjusting levels beyond the min/max levels, provided relative gain commands are used.

Optimizing process gain structure

How you adjust the processing gain directly affects sound quality. The optimal gain setting is one which is adjusted as high as possible above the noise floor without introducing clipping. Clipping can cause distortion which can damage amplifiers and loudspeakers.

To adjust the processing gain level properly, place a signal on the output at the maximum level it will generate. Adjust the gain until the peak level of the input, as shown on the Process meter, just begins to enter the red (clipping) zone, then reduce the gain slightly until peaks no longer climb into the red zone. This setting will ensure that the XAP 800 maximizes the signal-to-noise ratio without clipping the signal.

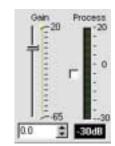
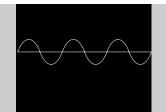



Figure 3.57. Process gain adjust and meter

CHAPTER 4: Advanced Configuration

Presets

Overview

For many audio conferencing applications, a great deal of system flexibility is needed to meet the challenges presented by changing meeting or conference room requirements. These requirements may include changes in muting, audio sources, room orientation, or room combining. And ideally, these changes are made instantaneously—without interrupting or affecting any meetings in progress.

Using presets enables you to accommodate these changing room requirements quickly and efficiently. When you create a preset, you are essentially creating a single room configuration option. Presets can be programmed with a variety of routing, level, gating, delay, filter, and EC reference settings to meet specific application requirements. You can change every unit parameter or a select few depending on your room needs. XAP 800 presets are unique in the sense that they operate independently of other presets in the unit. When a preset is run, only the selected inputs/outputs are changed—all other settings in other presets remain unchanged and are not reset. This means you can change audio routing and configuration settings in a room without affecting settings in other rooms (such as qain). You can create up to 32 presets for the XAP 800.

Presets can be executed in a variety of different ways including the Execute Preset utility in G-Ware, the front panel controls of the XAP 800, RS-232 external control devices, RS-485 control devices (ClearOne Control Panel and XAP IR Remote), logic in/out, and contact closure. You can also create macros which can run multiple presets. These options give you tremendous flexibility when designing your installations and will be described in more detail in this chapter.

Presets are used only within the local XAP 800 unit. However, if a preset is part of a macro, it can be activated on a networked XAP 800 unit.

Creating Presets

Presets are created in G-Ware using the Preset mode. To switch to Preset Mode, click the Preset Mode button on the toolbar or the Preset Mode button on the Flow Screen. The Preset Mode window (see Figure 4.2) consists of the Preset Configuration Pane (left side of the window), the G-Ware menus and toolbar (although most options are not available because they do not apply to presets), and the Preset Matrix Screen. There is no Flow Screen in Preset Mode since all configurable settings can be accessed from the Matrix Screen.

Figure 4.1. Preset Mode toolbar button

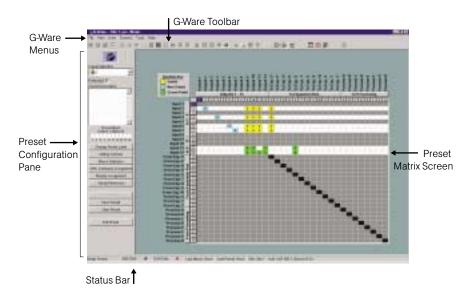


Figure 4.2. Preset Mode

Matrix Screen

The Matrix Screen in the Preset Mode is very similar to the Matrix Screen in Configuration Mode. All Input, Output, and Processing windows can be accessed by clicking on their respective buttons. You can also create custom labels by clicking on the current labels.

The routing matrix is grayed out because no routing changes have been made. When you click on the number or letter of an input, the row becomes active and you can change the routing, gate status, and cross point attenuation. All parameters for the selected input will be saved in the preset including routing. Also, the parameters for any outputs with a cross point in the selected row will be saved. Input rows that are not selected remain gray, or masked, and will not be affected when the preset is run.

Preset Configuration pane

The Preset Configuration pane is used to create preset properties such as number, name, and description as well as create custom preset controls, assign the preset to a gating group, select macros, and configure virtual EC references.

Preset Selection. Use the Preset Selection list to assign a number to the preset you are creating or to select an existing preset for editing.

Protected. Select the Protected check box to lock your preset. Locked presets are indicated by a padlock icon. Presets that are locked do not require the password to be run. However, the password is required to make changes to the preset. The preset password is set in the Unit Properties window; see page 26.

Figure 4.3. Preset Configuration pane

Preset Description. Use the Preset Description box for entering information about the preset. This description is stored in the site file, not the unit.

Preset Mask Control/Status B. With Preset Mask Control Status B you can require an active high (H) or active low (L) contact on a control pin (1–19 odd numbers) or combination of several contacts in order to run the preset.

A typical use for Preset Mask Control Status B is a room combining application which uses automatic partitions with sensors or triggers which set the pin to high (H) when the partition is closed and to low (L) when the partition is open. For example, if pin 1 is connected to the first partition and Pin 3 is connected to the second partition, then the Preset Mask Control Status B settings shown in Figure 4.4 will activate the preset when the first partition is open and the second partition is closed.

Change Preset Label. Change Preset Label opens the Change Preset Labels window, where you can create a short description (label) for the preset.

Gating Controls. The Gating Controls button opens the Gating Controls window, where you can select and configure gating groups for this preset. See page 41 for more information about gating groups.

Macro Selection. The Macro Selection button opens the Preset Macros window, where you assign specific macros to the preset you're creating. Select the macros you want to use with this preset, then click OK to save changes. See page 63 for more information about creating macros.

GPIO Command Assignment. This opens the GPIO Builder window. With the GPIO builder, you can configure pin assignments for the Control/Status port A. The Use in Preset option is available only when you open the GPIO Builder from the Preset mode and allows you to create customized pin assignments for each preset. If you open GPIO Builder from the toolbar while in Configuration Mode, or from the Flow Screen, you will not have the Use in Preset option. See Chapter 6: Control for instructions on configuring pin assignments.

Remote Assignment. This opens the Remote Builder window. With the Remote builder, you can configure the XAP IR Remote Control and the ClearOne Control Panels. The Use in Preset selection box is available only when you open the Remote Builder from the Preset Mode and allows you to create customized control for the current preset. If you open Remote Builder from the toolbar while in Configuration Mode, or from the Flow Screen, you will not have the Use in Preset option. See Chapter 6: Control for instructions on configuring the XAP IR Remote.

Figure 4.4. Preset Mask Control/Status B

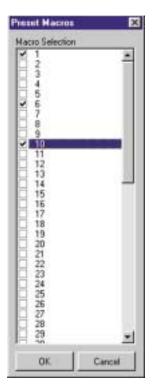


Figure 4.5. Preset Macros Window

To enable Acoustic Echo Cancellation or to change which outputs, expansion bus references, or virtual references will be used for this preset, open the Acoustic Echo Canceller window from the Inputs 1–8 configuration window.

Virtual Reference. The Virtual Reference button opens the preset Virtual Reference window. Using the Virtual Reference window, you can select which signals will be used by the four Virtual Reference points in this preset configuration. The only input rows which will be shown in this window are the input rows which are active in the Preset Matrix Screen. The routing matrix (right pane) in this window is read-only. Use the Virtual Reference portion of the window to select input channels for Virtual Refs. 1-4.

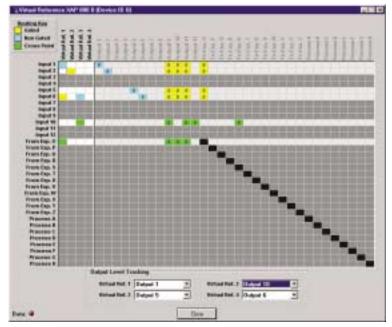


Figure 4.6. Assigning virtual references to the preset

As with the standard (non-preset) Virtual Reference configuration, you will need to select an output from the Output Level Tracking lists for each Virtual Reference you configure. See page 34 for more information on creating Virtual References.

Print Preset. Print Preset opens a Print Preview window and allows you to print a copy of your preset settings. The preset must be saved before it can be printed.

Save Preset. Saves the current preset.

Clear Preset. Clears current preset settings.

Exit Preset. Returns you to the Matrix screen in the Configuration mode.

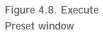
To create a preset

- 1. From the **Preset Selection** list, select the number of the preset you will be configuring. Enter a description of the preset in the Preset Description box.
- 2. If you want to password protect this preset, click **Protected**. See page 26 for information on creating the preset password.
- 3. Configure the routing matrix and make cross point attenuation adjustments.
- 4. Configure input, output, processing, and telco channel settings as needed. See Chapter 3: System Configuration for specific instructions on unit settings.
- 5. Click **Gating Controls** to set up gating parameters for the preset.
- 6. Make GPIO or Remote assignments as needed.
- 7. Click **Virtual Reference** if you need to create Virtual References specific to the preset.
- 8. When you have finished configuring the preset, click **Save Preset** to save the settings. Click **Exit Preset** to exit Preset Mode.

Storage space

In a realistic preset configuration scenario, it is highly unlikely that you would reach the storage capacity of the unit. In the event that you exceed the preset storage space, G-Ware will alert you when you try to save the preset. You will be asked to reduce the number of cross point changes or the number of macros in the preset. As a general rule, if you make cross point changes to three-fourths of the matrix, you can establish a maximum of 128 nested macros for a given preset.

Running presets


Presets can be run from G-Ware or the front panel controls on the XAP 800. You can also program external control devices (such as AMX or Crestron, ClearOne Control Panels, XAP IR Remote, and GPIO devices) or use macros to run presets. See Chapter 6: Control for more information on creating custom control.

To run a preset using G-Ware

Figure 4.7. Execute Preset toolbar button

- Select the **Execute Preset** button on the G-Ware toolbar.
- 2. Select the preset you want to execute from the **Preset** list.

3. Click **Execute** to run the preset and close the window.

To run a preset using front panel control

- 1. From the System Menu, scroll to **Select Preset** and press **Enter**.
- 2. Scroll to the preset number you want to run and press Enter.

Running multiple presets simultaneously

To run multiple presets at the same time, you need to create macros (see page 63). A macro is a series of commands which can be executed from G-Ware or by using any external control device. Typically you will create a macro for each configuration or group of presets you want to run at the same time. This ability to run multiple presets is critical in applications such as room combining. However, not only do you need to be able to run multiple presets simultaneously, you also need to be able to change presets without affecting other presets.

In order for this to happen, the system needs to know which presets have been run and shouldn't be rerun and which ones are ready to run. You supply the system with this information by setting the state (or flag) of the preset when creating the command line in the macro. The three options are:

- 0 = to set the state to off
- 1 =to execute the preset and set the state to on
- 2 =to execute the preset and set the state to off

It is also possible to assign states to presets when creating Remote Panel, serial, or GPIO control. However, unless you create macros, you will only be able to run one preset at a time.

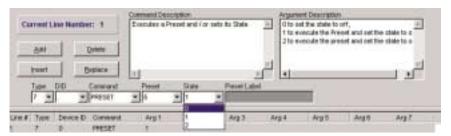


Figure 4.9. Assigning a state to a preset command in the Macro Editor

If a preset is flagged as "On," nothing will happen when the preset is executed again because the system knows it has already been run. This prevents any manual adjustments that are made during the course of the meeting (gain, muting, etc.) from being lost.

Room combining example

In the room combining scenario depicted in Figure 4.10, there are four possible room configurations using six presets (P1–P6). In order to change configurations without disturbing meetings in progress, a macro must be created for each configuration that tells the system what to do with each of the six presets.

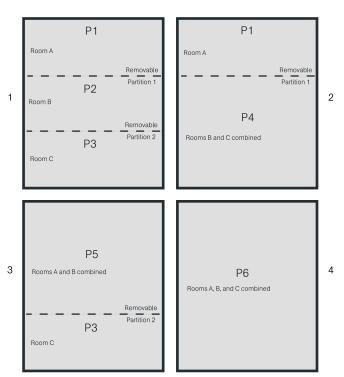


Figure 4.10. Room combining diagram

You can also create a macro to set all preset flags to 0 which ensures all presets are ready to run again.

The four macros (one for each configuration) are set up as follows:

Device	Туре	ID	
PSR1212	4	0-7	
XAP 800	5	0-7	
XAP TH2	6	0-F	
XAP 400	7	0-7	

Configuration 1					Configuration 2				
Type	DID	Command	Preset	State	Туре	DID	Command	Preset	State
5	0	Preset	1	1	5	0	Preset	1	1
5	0	Preset	2	1	5	0	Preset	2	0
5	0	Preset	3	1	5	0	Preset	3	0
5	0	Preset	4	0	5	0	Preset	4	1
5	0	Preset	5	0	5	0	Preset	5	0
5	0	Preset	6	0	5	0	Preset	6	0
Config	juratio	on 3			Config	uratio	on 4		
Config Type	juratio	on 3 Command	Preset	State	Config Type	j uratic DID	on 4 Command	Preset	State
_	•		Preset 1	State 0				Preset 1	State 0
Туре	DID	Command	Preset 1 2		Туре	DID	Command	Preset 1 2	
Type 5	DID 0	Command Preset	1	0	Type 5	DID 0	Command Preset	1	0
Type 5	DID 0 0	Command Preset Preset	1 2	0 0	Type 5 5	DID 0 0	Command Preset Preset	1 2	0
Type 5 5 5 5	DID 0 0 0	Command Preset Preset Preset	1 2 3	0 0 1	Type 5 5 5 5	DID 0 0 0	Command Preset Preset Preset	1 2 3	0

When the room is in Configuration 1, running the Configuration 2 macro will change the presets to the following states:

- P1 does not change because the flag is already set (1)
- P2 and P3 clear their states (0) so they can be run
- P4 runs and sets its state to on (1) which prevents other presets from reruning it
- P5 and P6 clear their states (0) so they can be run

When the room is in Configuration 3, running the Configuration 1 macro will change the presets to the following states:

- P1 and P2 run and set their state to on (1) which prevents other presets from reruning them
- P3 does not change because the flag is already set (1)
- P4, P5, and P6 clear their states (0) so they can be run

For more detailed information on creating macros, see the Macros section on the next page.

Macros

A macro is a series of commands which can be run from G-Ware, the front panel controls, or by using any external control device. Macros streamline the operation of the XAP 800, allowing you to make quick configuration changes and, as previously discussed, making it possible to execute multiple presets simultaneously (see pages 60-62). Macros can also contain commands that are executed on other XAP units. See pages 97–98 for a list of commands which can be used in macros.

The XAP 800 is designed to support up to 255 macros, with an average of 150 command lines each. In the unlikely event that you exceed G-Ware's capacity, you will be notified with a warning that indicates the command line at which memory is exceeded.

Creating macros

There are two ways to create macros in G-Ware: the Macro Recorder, which records your onscreen selections, and the Macro Editor, which allows you to directly create command lines. The Macro Editor is also used to edit macros created using the Macro Recorder.

To create a macro using Macro Recorder

 Click the Macro Recorder button on the G-Ware toolbar. The Macro Record window opens and the mode is changed to Macro on the status bar.

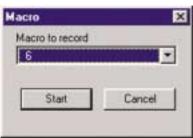


Figure 4.13. Macro Record stop window

Figure 4.12. Macro Record start window

- Select the macro number from the Macro to Record list, then click **Start**.
- 3. Make any routing and input/output configuration changes (such as gain adjustments, mute, etc.) to be included in the macro. Make these changes the same way you made changes in Configuration mode (see Chapter 3: System Configuration for more information).
- 4. Click Stop in the Macro Record window in the upper right-hand corner of the screen. This stops the macro recording and opens the Macro Editor window. See page 65 for editing instructions.

Figure 4.11. Macro Recorder toolbar button

When you select an existing macro as the macro to record, the new recording is appended to the end of the existing macro.

To create a macro using Macro Editor

Figure 4.14. Macro Editor button

 Click the Macro Editor button in the G-Ware toolbar to open the Macro Editor.

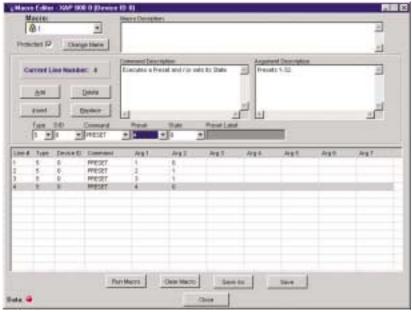


Figure 4.15. Macro Editor window

- Select the Macro (from 1 to 255) you are creating from the Macro list. Numbers that are already assigned to macros will be marked with an asterisk.
- 3. Select the **Protected** check box to lock your macro. Locked macros are indicated by a padlock icon. Macros that are locked do not require the password to be run. However, the password is required to make changes to the macro. The macro password is the same as the preset password and is set in the Unit Properties window; see page 26.
- 4. Click **Change Name** to create a more descriptive name for the macro which is displayed in addition to the macro number (limit 20 characters).
- 5. Type any notes pertaining to the macro in the Macro Description box.
- 6. Select the **Device Type** and **ID** from their respective lists.
- 7. Select the **Command** from the Command list. When you select a command, a description of it appears in the Command Description box.
- 8. Select the command parameters from the argument lists. The parameters that are available depend on the command selected. When you select an argument, a description of it appears in the Argument Description box.

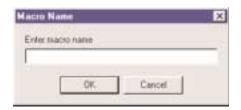


Figure 4.16 Macro Name window

Device	Туре	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0-F
XAP 400	7	0-7

9. Click **Add** to place the command into the macro. The command line now appears in the command line table.

You can now create another command line for the macro or save the completed macro.

Editing macros

With the Macro Editor, you can add, edit, or remove command lines in the macro. If you used the Macro Recorder to create a macro, the Macro Editor opens automatically. Otherwise, click the Macro Editor toolbar button.

To edit a macro

- 1. Select the macro from the **Macro** list.
- 2. Click Change Name to edit the macro label.
- 3. Double-click the command line you want to edit. The Current Line Number displays the selected command line.
- 4. Make changes to the command or arguments by selecting options from the drop-down lists.
- 5. Click **Replace** to overwrite the old command line with the new changes.
- 6. Click **Save** or **Save As** to save the macro.

To delete a macro

- Click Clear Macro to delete the entire macro.
- Click **Delete** to delete the selected command line.

To add or insert a command line

- Click Add to place the current command line into the next available row in the command line table.
- Click Insert to insert the current command line into the row directly above the currently selected command line in the table.

Running macros

Macros can be run from G-Ware or the front panel controls on the XAP 800. You can also run a macro using external control devices (see Chapter 6: Control for more information).

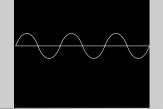
To run a macro using G-Ware

Figure 4.17. Run Macro toolbar button

- 1. Select the **Run Macro** button on the G-Ware toolbar.
- 2. Select the macro from the **Select Macro** list.

Figure 4.18. Run Macro window

3. Click **Run** to run the macro and close the window.


To run a macro using front panel control

- 1. From the System Menu, scroll to **Select Macro** and press **Enter**.
- 2. Scroll to the number of the macro you want to run and press **Enter**.

To run a macro using the Select panel or GPIO

• Use the macro command. See Chapter 6: Control for more details.

CHAPTER 5: Operation

G-Ware features several tools designed to assist you as you install your XAP 800 Audio Conferencing System including Signal Generator, Document Compare, Print Reports, Copy and Paste, and Message Log. G-Ware also provides Gate Views and Meters so you can quickly monitor or troubleshoot your system. This chapter describes how to use these utility programs and monitoring views in G-Ware.

Utilities

Signal Generator

The Signal Generator window allows you to generate test audio signals to check signal paths, gain settings, etc. The Signal Generator can generate pink noise, white noise, and tone.

- Pink Noise. Pink noise is an audio test signal containing all the frequencies in a given audio spectrum, with equal energy in each octave. Pink Noise is the default signal.
- White Noise. White noise is an audio test signal which is distributed evenly throughout a given frequency range.
- **Tone.** Selecting Tone activates the tone configuration portion of the window. The tone is a sine wave with less than .03% distortion.

The test signals created by the signal generator are assigned to a particular input; this allows you to verify the operation of the processor settings you have selected.

To use pink or white noise

- 1. Select the XAP 800 **Unit** and **Input Channel** you want to use.
- 2. Use the **Amplitude** control to select the amplitude (volume) of the signal you want to use. The amplitude range is from -60 to +20dB. Default is 0dB.
- 3. Select Pink (default) or White.
- 4 Click **Signal On** to generate the noise signal on the selected input. Click Signal On again to terminate the noise signal.

Figure 5.1. Signal Generator Button

The Signal Generator window can also be opened by selecting Signal Generator from the Tools menu.

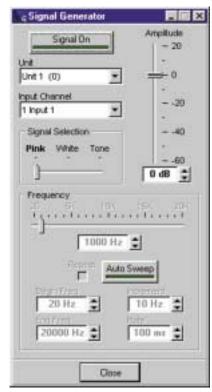


Figure 5.2. Signal Generator window

To use tone

- 1. Select the XAP 800 **Unit** and **Input Channel** the signal will be generated on.
- 2. Select Tone.
- 3. Using the **Frequency** slider, select a specific tone frequency. You can also enter the frequency in the box directly below the Frequency slider.

- or -

Use the **Auto Sweep** button to sweep a range of frequencies. Select the **Begin Frequency**, the **End Frequency**, the **Increment**, and the **Rate**.

Auto Sweep provides the ability to move the frequency of the tone generator from a low frequency to a high frequency at a specified rate. Click Auto Sweep to begin the frequency sweep. The Frequency slide control and readout reflect the progress of the Auto Sweep. Auto Sweep stops at the last frequency in the sweep range upon completion of the sweep. Or you can click the button at any time to stop the sweep. Sweep range is 20Hz—20kHz; increment range is 10Hz—20kHz, and the rate range is 10ms—2000ms. Default is 100ms. Select **Repeat** if you want Auto Sweep to continue in cycles.

4. Click **Signal On** to generate the tone. Click **Signal On** again to terminate the noise signal.

Document Compare Utility

Figure 5.3. Compare Utility button

Figure 5.4. You can also open the Document Compare Utility from the Start menu

The Document Compare Utility samples and compares configuration information between two sites. These can exist as actual sites/units or as documents (site files) that are saved to your computer. It shows you where differences are between the two and allows you to copy and paste settings between them. Open the Compare Utility by clicking on the Compare Utility toolbar button.

To compare site files

- 1. Click the **Browse** button at the right of the Site 1 Document Name. This opens the Open window.
- 2. Select the first site file you want to compare. To compare the settings in a connected site, click on the G-Ware Connections tab and select the unit or site.
- 3. When you have made a selection, click **Refresh** to update the status of the unit, site, or connection. Then click **Open**.

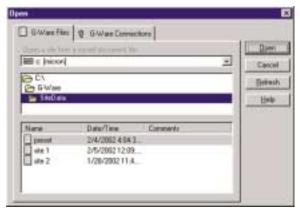


Figure 5.5. Open window

4. Repeat steps 1–3 to select the second second unit, site, or file for comparison.

When you click Open, G-Ware automatically compares information from the selected items and displays a table of parameters which differ (note that the actual differences are not displayed at this point). This process can take a minute or two.

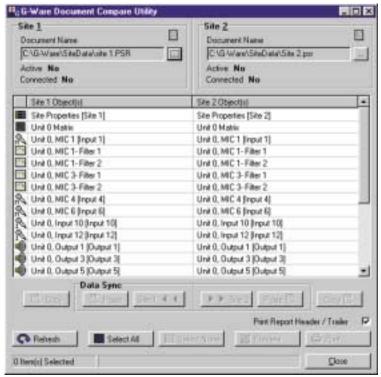


Figure 5.6. Document Compare Utility showing two XAP 800 sites. The items listed in the Site 1 and Site 2 columns show where the differences are found.

5. To view the difference(s) between two sources on a single parameter, select the row in the table you want to examine, then click **Preview**. This opens the Print Preview window, which shows what the differences are.

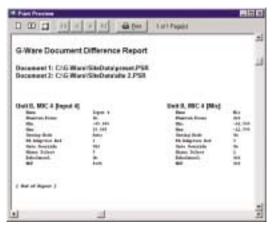



Figure 5.7. Print Preview window

- To print the report, click **Print** (you can also click Print in the Compare
 Utility window to print the report). The other buttons in this window allow
 you to tailor the view of the report and browse sequentially through each
 page.
- 7. When you finish viewing or printing the report, close the **Print Preview** window to return to the Document Compare Utility.

Copying settings

When two sites are compared, the **Copy to Site**, **Paste**, and **Copy** buttons at the bottom of the window become selectable.

Print the comparison for a detailed list of differences between the two sites.

In the window shown in Figure 5.9, clicking the **Site 1** button transfers the selected settings from a line selected in the Site 2 column to the corresponding line in the Site 1 column. The Copy button copies the settings of the Site/Line above it, allowing you to paste (with the Paste button) settings to another site, unit, or even to a particular G-Ware parameter, such as an input.

The remaining buttons in the Document Compare window do the following:

- Refresh button updates the connection status to site(s) or unit(s).
- Select All selects everything in the Site 1/Site 2 table.
- Select None deselects anything highlighted in the table.
- · Click Close to exit the Document Compare Utility.

Print Reports

The Print Reports utility allows you to print a variety of configuration reports. To open the Print Reports utility, select Print from the File menu.

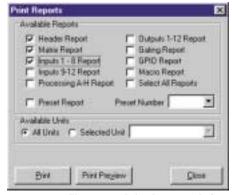


Figure 5.9. Print Reports window

Select the item(s) you want to print, then click Print Preview to view a preview of the report or Print to print the report(s). For example, you could select Inputs 1–8 Report to print a copy of the settings you've established for Inputs 1–8.

opening

Utility.

Make a note of the baud rate selected in the Site Properties window before the G-Ware Firmware

GFirm Firmware Utility

To make it easy to upgrade your unit when new firmware enhancements are released, G-Ware features a built-in firmware upgrade utility. Before upgrading firmware, save a copy of your site files and verify that the flow control setting on the unit (RS-232 menu on front panel LCD) is enabled. Also, make sure flow control is set to Hardware in the G-Ware (Site Properties).

To upgrade firmware

- 1. Connect the unit to the PC using a straight-through 9-pin serial cable.
- 2. Open the G-Ware Firmware Utility by clicking on the GFirm toolbar button.

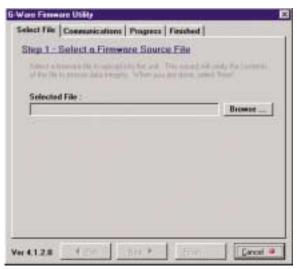


Figure 5.11. G-Ware Firmware Utility

3. Click **Browse** to access a list of available firmware updates. Select the file that matches the type of unit you are upgrading and click Open.

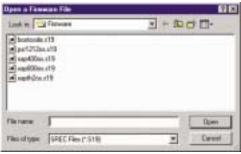


Figure 5.12. Available firmware files

4. The selected firmware file will self verify and display the message Verified, OK. If the file information matches your unit and the file is verified, click Next to advance to the Communications tab.

Figure 5.10. GFirm button

If the GFirm toolbar button is not on the G-Ware toolbar, you need to install the current G-Ware release. You can download G-Ware from the ClearOne web site at www.clearone.com.

 Select the PC COM port you are using for the upgrade. Select the Baud Rate that matches the baud rate in the Site Properties window.



Figure 5.13. Selecting baud rate

- 6. Click Next. If the upgrade requires you to save your site files, a warning message will display. You will need to exit the G-Ware Firmware Utility, sync to the units with G-Ware, and save the site file(s) if you have not done so already. Click Yes, Continue to begin firmware upload.
- 7. The Progress tab displays the status of the firmware upgrade. Do not interrupt the procedure. The process begins by erasing flash sectors and then uploading the firmware file.
- 8. If the process fails, do not use the Start Over button. Close GFirm instead and verify you are using a 9-pin straight-through serial cable and that baud rate and flow control are configured properly. Restart GFirm and return to step one of this procedure.
- 9. When the upgrade is complete, the Finished tab appears. Check the front panel of unit and verify the proper firmware version for your unit is now displayed. If you have no more units to upgrade, you can now close the GFirm program.
 - If updating multiple units, move the RS-232 connection to the next unit and click **Start Over** to continue.
- 10. After upgrading the firmware on all units, restore expansion bus connections.

G-Ware Switcher

G-Ware Switcher allows you to alternate between different G-Ware software versions that are installed on the same PC. Prior to this release, the older version of G-Ware had to be removed before the new version could be installed. If you want to reinstall previous versions, you must install them in different directories or G-Ware Switcher will not work properly. Install the current version last.

To use G-Ware Switcher

 Launch G-Ware Switcher from the Windows Start menu by selecting Programs, ClearOne G-Ware, and then G-Ware Switcher.

The G-Ware Switcher Utility Window opens. G-Ware Switcher automatically searches the PC for G-Ware software versions and displays them in the window.

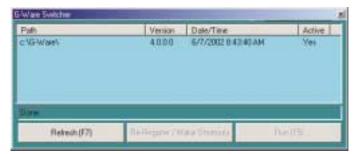


Figure 5.14. G-Ware Switcher

- 2. Select the G-Ware version you want to use.
- 3. If the selected G-Ware version is older than any other version of G-Ware on the PC, click **Re-Register/Make Shortcuts**.
- 4. Click **Run**. The selected G-Ware version launches. Click **Refresh** to initiate a new search for G-Ware versions.

Copy and paste settings

In most areas of G-Ware software, right-clicking the mouse opens a shortcut menu. The options on this menu change depending on which window you are in.

The version shown at left allows you to copy and paste unit settings and sites, as well as add or remove units from a site. For example, to copy unit settings to another unit, place the cursor in the blue area of the Flow Screen, then right-click to open the shortcut menu. Select Copy Unit. Next, open (or add) another unit, then right-click in the Flow Screen of the second unit to open the shortcut menu. lick Paste Unit. This copies the properties of the first unit to the second one.

Figure 5.15. Shortcut menu

Message Log

The Message Log displays messages indicating successful or unsuccessful site connection and all errors. This information is displayed automatically. To open the Message Log, click the Message Log toolbar button or select Message Log from the Tools menu.

Figure 5.16. Message Log button

Figure 5.17. Message Log window

Monitoring Views

Gate View

The Gating button opens the Gate View window, which allows you to view gating activity at each mic input on each unit in your site.

Select Enabled to observe unit gating information. Note that the window shows gating activity only for units which have been added to G-Ware. The gate indicator for each input is dark green in the gate-off condition and light green if the input is gated on. Click Close to save the settings and exit.

Figure 5.18. **Gating button**

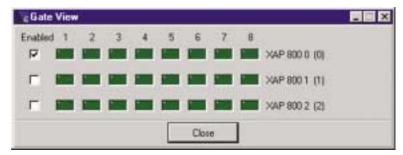


Figure 5.19. Gate View window

Meter Views

Figure 5.20. Meters button

The Meter Views window allows you to monitor the level of any input, output, or processing signal of the XAP 800. You can monitor the same parameter on multiple inputs (or outputs or processing channels) for comparison or you can monitor an entire signal flow from input to output. Click the Meters button on the G-Ware toolbar to open this window.

Figure 5.21. Meter Views window

To configure Meter Views

- 1. Select the **unit number**, **meter type**, and **channel** you want to use. Note that you can configure the meters such that you can monitor the same input signal as it makes its way through various stages in the XAP 800.
- 2. Enable the meter by clicking the adjacent **Enabled** box.
- 3. When you have finished making changes, click **Close** to exit the window.

CHAPTER 6: Control

There are many ways to control your XAP 800 and other networked units. This chapter explains how to set up control for Control/Status A port using GPIO Builder, XAP IR Remote and ClearOne Control Panel using Remote Builder and RS-232 port.

GP10 Builder

Control/Status A

GPIO stands for general-purpose input/output. The GPIO Builder is used to establish the pin assignments for the 16 user definable pins on Control/Status Port A. These pins provide control via contact closure and status via open collector functions in the unit. Note that the pins numbered in blue are command pins; the pins numbered in green are status pins. The default pin assignments are listed on page 88. You can open GPIO Builder from the Flow Screen or the G-Ware toolbar.

To program control/status pins

1. Select the **Control/Status A** pin you want to configure.

The current (default) pin assignment is displayed in the Active (Low)/Inactive (High) Command box.

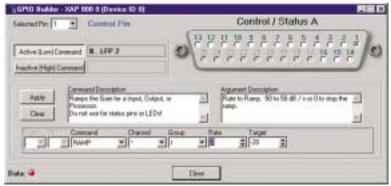
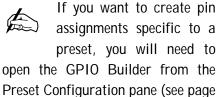



Figure 6.1. GPIO Builder Window

- 2. Select the **Device Type** and **ID** from their respective lists.
- 3. Select the **Command** from the Command list. When you select a command, a description of it appears in the Command Description box.
- 4. Select the command parameters from the argument lists. The parameters that are available depend on the command selected. When you select an argument, a description of it appears in the Argument Description box.
- 5. Click **Apply** to apply the changes you have made to the selected pin. Or, click **Clear** to clear any programming for the pin.

57) and select Use in Preset.

GPIO commands can be configured only for the local XAP 800 unit.

Remote Builder

The Remote Builder window is used to configure optional XAP IR Remotes and ClearOne Volume and Select Control Panels. These control devices are connected to Remote Panel A or Remote Panel B—the RS-485 connectors. If you want to create custom control assignments for presets, open the Remote Builder from the Preset Configuration pane and select the Use in Preset option.

Figure 6.2. Remote Builder button on Flow Screen

Figure 6.3. Remote Builder toolbar button

XAP IR Remote

The XAP IR Remote provides remote control of volume, mute, speed dial, and dialing for a XAP system. You can connect up to two XAP IR Remote Controls—one to each RS-485 port. See the XAP IR Remote user manual for more information. The XAP IR Remote has five programmable buttons and one programmable LED. You can customize your XAP IR Remote using the Remote Builder. To open the Remote Builder, click the Remote Builder button on the Flow Screen (or the button in the G-Ware toolbar).

Figure 6.4. Remote Builder

If you want to program different button assignments for use in a preset, you will need to open the Remote Builder from the Preset Configuration pane (see page 57) and select Use in Preset.

To program the XAP IR Remote

- 1. Select an **ID** number for the remote from the Select Remote ID list.
- 2. Click **Change Name** to create a more descriptive name for the remote which is displayed in addition to the remote number (limit 20 characters).
- 3. Select IR Remote (default) from the Select Remote Type list.
- 4. In the Telephone Interface section, select the **Device Type** and **ID** of the unit (XAP 400 or XAP TH2) that you want the XAP IR remote to use when making and receiving calls. The default settings are ** which will select any telco device found on the network. If you have multiple telco devices in your network, you must specify which unit will be used to make and receive calls.
- 5. Select the button or LED you want to program from the Select Button/LED list. You can also select the button or LED by clicking directly on the picture of the remote. (Selectable buttons are colored white.)
- 6. Click the **Active Command** or **Inactive Command** button to set the command for operation when the button is active or inactive.
- 7. Select the **Device Type**, **ID**, and **Command** from their respective lists. When you select a command, a description of it appears in the Command Description box.
- 8. Select the command parameters from the argument lists. The parameters that are available depend on the command selected. When you select an argument, a description of it appears in the Argument Description box.
- 9. Click the **Apply** button to apply the command to the selected Active or Inactive command button. Or, click Clear to clear any programming.

ClearOne Control Panels

ClearOne Control Panels are convenient wall panels which provide control over the XAP 800 audio conferencing system. There are two Control Panel models: Volume and Select. You can connect up to six Control Panels in daisy chain fashion to each RS-485 port. See Appendix C for more information. The Control Panel buttons are programmed using the Remote Builder. You can open the Remote Builder using the Remote Builder button on the Flow Screen or the Remote Builder button on the G-Ware toolbar.

Up to five control panels and one IR remote can be connected to each of the RS-485 ports. In addition to selecting the ID number in the software, you will also need to use the DIP switches on the IR receiver to assign the Device ID. See the XAP IR Remote manual for more information.

Device	Type	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0-F
XAP 400	7	0-7

Each Control Panel button can be programmed to respond like a momentary or latching button. A command can be programmed to activate or deactivate a particular function.

Up to six control panels (or five control panels and one IR remote) can be connected to each of the RS-485 ports. In addition to selecting the ID number in the software, you will also need to use the DIP switches on the control panel to assign the Device ID. See Appendix C: Control Panel for more information.

If you want to program different button assignments for use in a preset, you will need to open the Remote Builder from the Preset Configuration pane (see page 57) and select Use in Preset.

To program the Volume panel

- Select an **ID** number for the remote from the Select Remote ID list.
- Click Change Name to create a more descriptive name (limit 20 characters) for the remote which is displayed in addition to the remote number in the Select Remote ID list. The name is also updated on the graphic label.

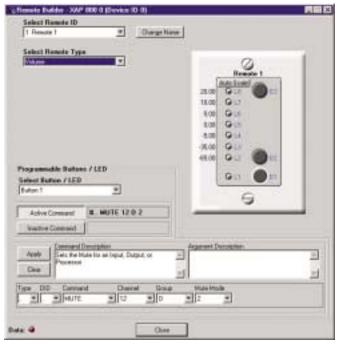


Figure 6.5. Volume Panel selected in the Remote Builder

- 3. From the Remote Type list, select **Volume**. The Control Panel graphic will change to match your selection.
- 4. Select the button or LED you want to program from the Button/LED **Selection** list. You can also select the button or LED by clicking directly on the picture of the Volume panel.

The default numbers on the left of the Volume panel LEDs represent gain levels in decibels. To change a level, click on the LED and then select the level from the Gain list at the bottom of the window. You can also set the upper and lower limits of gain on LEDs L2 and L8 and then click Auto Scale, which automatically assigns values to LEDs L3-L7 on a distributed scale.

5. Click the Active Command or Inactive Command button to set the command for operation when the button is active or inactive.

- Select the **Device Type**, **ID**, and **Command** from their respective lists.
 When you select a command, a description of it appears in the Command Description box.
- 7. Select the command parameters from the argument lists. The parameters that are available depend on the command selected. When you select an argument, a description of it appears in the Argument Description box.
- 8. Click the **Apply** button to apply the command to the selected Active or Inactive command button. Or, click **Clear** to clear programming.

To program the Select panel

- 1. Select an **ID** number for the remote from the Select Remote ID list.
- Click Change Name to create a more descriptive name (limit 20 characters) for the remote which is displayed in addition to the remote number in the Select Remote ID list. The name is also updated on the graphic label.

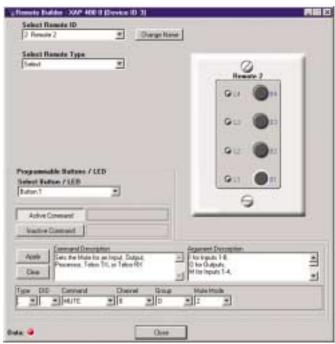


Figure 6.6. Select Panel selected in the Remote Builder

- 3. From the Remote Type list, select **Select**. The Control Panel graphic will change to match you selection.
- Select the button or LED you want to program from the Button/LED
 Selection list. You can also select the button or LED by clicking directly on the picture of the Select panel.

If you want to program different button assignments for use in a preset, you will need to open the Remote Builder from the Preset Configuration pane (see page 57) and select Use in Preset.

- 5. Click the **Active Command** or **Inactive Command** button to set the command for operation when the button is active or inactive.
- Select the **Device Type**, **ID**, and **Command** from their respective lists.
 When you select a command, a description of it appears in the Command Description box.
- 7. Select the command settings from the argument lists. The options that are available depend on the command selected. When you select an argument, a description of it appears in the Argument Description box.
- 8. Click the **Apply** button to apply the command to the selected Active or Inactive command button. Or, click **Clear** to clear programming.

RS-232 Port

Remote Modem Access

You can access the unit remotely through a modem connected to the serial port. To enable this feature, configure the port for modem mode.

When in modem mode, the serial port will send an initialization string to the modem upon entering the mode or upon power-up of the unit. You program the initialization string in Site Properties window in G-Ware. Typical configurations you set with the initialization string include setting a fixed baud rate for the unit and setting up auto-answer parameters.

You must enter a password before you can control the system this way. The default password is blank (a carriage return). You can change it to any combination of letters and/or numbers up to 12 characters. It is not case-sensitive.

When you establish a valid serial connection with the unit in modem mode, the unit will wait for a carriage return. When you have entered a carriage return, the system will prompt you to enter the password. If there is no activity for five minutes on the serial port while in modem mode, the unit will re-prompt for the password.

Serial commands

Serial commands can be passed through the XAP 800 RS-232 port using Hyper Terminal, touch panels, or other compatible remote control devices. To learn more about serial commands, see Appendix E.

The modem password is created in the Unit Properties window (see page 26) or by using the MPASS serial command (see page 117).

Command strings

By creating command strings, you can use your XAP 800 to control equipment such as lighting, projectors, and room dividers as well as other ClearOne products. A command string is passed to the connected device via the XAP 800's RS-232 port. You can create up to eight customized serial command strings (limit 80 characters each) in the Command Strings window. To open the Command Strings window, click the Command Strings toolbar button.

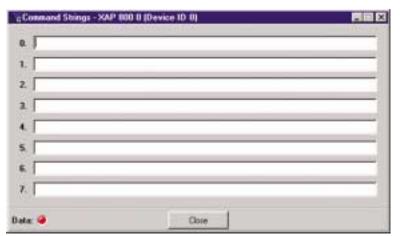


Figure 6.8. Command Strings window

 Type the serial command string (limit 80 characters) in one of the eight locations. The command string will support special characters. See list at right.

To run a command string

- Use any external control device (e.g. Control Panel, GPIO control) to run the STRING serial command.
 - or -
- Incorporate the STRING command into a macro which can be run from G-Ware, the front panel, or any external control device.

For information on creating macros, see page 63. For information on GPIO builder, see page 77. For information on Control Panels, see page 79.

Figure 6.7. Command Strings toolbar button

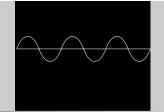
Special characters

 $\lambda a = alert$

\b = backspace

 $\fint f = formfeed$

n = new line


\r = carriage return

\t = horizontal tab

 $\v = \text{vertical tab}$

APPENDICES

Appendix A: Specifications

Dimensions (LxDxH) 17.25" x 10.25" x 1.75" 43.8 x 26 x 4.5 cm

Weight
7 lb/3.2 kg dry
12 lb/5.5 kg shipping

Operating Temperature 32–100° F/0–38° C

Humidity 15% to 80%, non-condensing

Power Input Range Auto-adjusting 100–240VAC; 50/60Hz

Power Consumption 30W typical

Expansion Bus In/Out
Proprietary Network
RJ-45 (2), 115.2kbps, 110kΩ
impedance
Category five twisted-pair cable
80' (24 meters) maximum cable length

between any two XAP 800s,

XAP 400s, or PSR1212s

RS-232 DB-9 female

9,600/19,200/38,400 (default)/57,600 baud rate; 8 bits, 1 stop, no parity Hardware flow control on (default)/off

Control/Status
DB25 female A/B (2)
Inputs A/B: active low (pull to ground)
Outputs A/B: open collector, 40VDC
max, 40mA each

+5VDC pins (2) (300mA over-current protected)

Remote Panels A/B
4-pin push-on terminal block
RS-485 Proprietary Protocol
Category five twisted-pair cable
1 pair data, 1 pair power and ground
+15VDC (300mA over-current
protected)

Mic/Line Inputs 1-8 Push-on terminal block, balanced, bridging Impedance: $5k\Omega$

Nominal Level: adjustable -55dBu, -25dBu, 0dBu

Maximum Level: -35dBu, -5dBu, +20dBu

Echo Cancellation: 130ms tail time (works with 12dB of room gain) Noise Cancellation: 6–15dB attenuation Phantom Power: 24V, selectable

Line Inputs 9-12

Push-on terminal block, balanced, bridging

Impedance: $> 10 k\Omega$ Nominal Level: 0dBu Maximum Level: 20dBu

Outputs 1-12

Push-on terminal block, balanced

Impedance: 50**Ω** Nominal Level: 0dBu Maximum Level: 20dBu

Audio Performance

Conditions: Unless otherwise specified, all measurements are performed with a 22Hz to 22kHz BW limit (no weighting)

Frequency Response: 20Hz to 20kHz ± 1 dB
Noise (EIN): -126dBu, 20kHz BW, max gain, Rs=150 Ω THD+N: <0.02%
SNR: 80dB re 0dBu, (A-weighted)
Dynamic Range: 100dB (A-weighted)
Crosstalk <-91dB re 20dBu @ 20kHz channel to channel

Approvals FCC, CSA, IC, CE, NOM, ACA, SABS, JATE

Assignable Processing Blocks

Filters:
All pass
Low pass
High pass
Low shelving
High shelving
Parametric EQ
Notch
CD Horn

Crossovers
Bessel
Butterworth
Linkwitz-Riley
Compressor

Delay adjustable up to 500ms

Matrix Mixing Parameters
32x32 matrix
12 analog in/out
12 Expansion Bus in/out
8 assignable processing blocks in/out

Auto Mixer Parameters Number of Open Microphones (NOM) PA Adaptive Mode

First Mic Priority Mode

Last Mic Mode

Maximum # of Mics Mode

Ambient Level

Gate Threshold Adjust Off Attenuation Adjust

Hold Time Decay Rate

Microphone Input Configuration

Input Gain Adjust Mic or Line Level Phantom Power on/off Echo Cancellation on/off Noise Cancellation on/off

Filters

All Pass Low Pass High Pass

Notch

PEQ

Mute on/off

Chairman Override on/off

AGC on/off

Speech Leveler on/off Auto Gate/Manual gate Adaptive Ambient on/off

Set-up Software G-Ware

Appendix B: Pinouts

RS-232 COM DCE port pinout (female)

Pin Number	Control	Pin Number	Control
1	DCD	6	DSR
2	TXD	7	CTS
3	RXD	8	RTS
4	DTR	9	No connection
5	Ground		

Figure B.1. RS-232 connector

1

ClearOne recommends that all nine pins be connected to avoid communication errors.

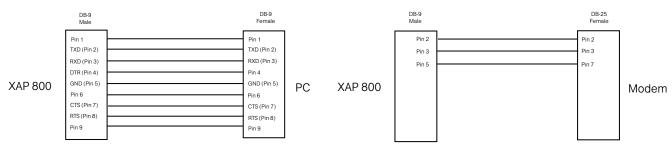


Figure B.2. XAP 800 to PC RS-232 connections

Figure B.3. XAP 800 to Modem RS-232 Connections

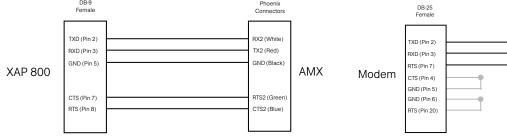


Figure B.4. XAP 800 to AMX RS-232 Connections

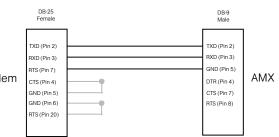


Figure B.5. Modem to AMX RS-232 Connections

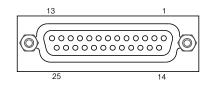


Figure B.6. Control/Status Ports A, B

The first 16 pins on the Control/Status Port A are can be programmed using G-Ware software.

Control/Status A Port Pinout (female)				
Pin	Definable	Туре	Default Description	
1	Yes	Control	Lock front panel toggle	
2	Yes	Status	Status of front panel lock	
3	Yes	Control	Mute all mics toggle	
4	Yes	Status	Status of mute all mics	
5	Yes	С	Mute Output 9 toggle	
6	Yes	S	Status of Output 9 mute	
7	Yes	С	Mute Output 10 toggle	
8	Yes	S	Status of Output 10 mute	
9	Yes	С	Mute Output 11 toggle	
10	Yes	S	Status of Output 11 mute	
11	Yes	С	Mute Output 12 toggle	
12	Yes	S	Status of Output 12 mute	
13	Yes	С	Volume Up D Output 1 (1dB)	
14	Yes	S	Not programmed	
15	Yes	С	Volume Down D Output 1 (1dB)	
16	Yes	S	Not programmed	
17	No	S	Mic #1 Gate Status	
18	No	S	Mic #2 Gate Status	
19	No	S	Mic #3 Gate Status	
20	No	S	Mic #4 Gate Status	
21	No	S	Mic #5 Gate Status	
22	No	S	Mic #6 Gate Status	
23	No	S	Mic #7 Gate Status	
24	No	S	Mic #8 Gate Status	
25	No	Ground	Ground	

The Control/Status connections are provided on two DB-25 connectors. These connectors are labeled Control/Status A and Control/Status B and contain different types of pins. The inputs on these connectors are internally pulled high and are activated by connecting the pin to ground. The outputs are open collectors, which are open when inactive and grounded when active. This allows the XAP 800 to control and be controlled by a wide variety of external devices, including relays, lamps, switches, and other equipment. Control pins on Control/Status A are momentary while control pins on Control/Status B are latching.

Control/Status B port pinout

Pin	Definable*	Туре	Default Description
1	No	С	Preset select bit
2	No	S	Preset select status for Pin 1
3	No	С	Preset select bit
4	No	S	Preset select status for Pin 3
5	No	С	Preset select bit
6	No	S	Preset select status for Pin 5
7	No	С	Preset select bit
8	No	S	Preset select status for Pin 7
9	No	С	Preset select bit
10	No	S	Preset select status for Pin 9
11	No	С	Preset select bit
12	No	S	Preset select status for Pin 11
13	No	С	Preset select bit
14	No	S	Preset select status for Pin 13
15	No	С	Preset select bit
16	No	S	Preset select status for Pin 15
17	No	С	Preset select bit
18	No	S	Preset select status for Pin 17
19	No	С	Preset select bit
20	No	S	Preset select status for Pin 19
21	No connection		
22	No connection		
23	No	-	+5VDC, 300mA
24	No	-	+5VDC, 300mA
25	No	-	Ground

Control/Status A and B: DB25 female Inputs A and B: active low (pull to ground)

Outputs A and B: Open collector, 40V max, 40mA each

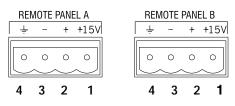


Figure B.7. RS-485 Remote Control Ports

RS-485 Remote Panel A and B connectors

Pin	Description
1	+ 15VDC, 300mA (over-current protected)
2	Data +
3	Data –
4	Ground

Set connector pinout

Pin	Description	Pin	Description
1	To nin 6 of SET D I 110	4	Tin
1	To pin 6 of SET RJ-11C	4	Tip
2	To pin 5 of SET	5	To pin 2 of LINE
3	Ring	6	To pin 1 of LINE RJ-11C

Line connector pinout

Pin	Description	Pin	Description
1	To pin 6 of LINE RJ-11C	4	Ring
2	To pin 5 of LINE	5	To pin 2 of SET
3	Tip	6	To pin 1 of SET RJ-11C

Appendix C: Control Panel

The Volume Control Panel and Select Control Panel connect to either the Remote Panel A or B connector of the PSR1212, XAP 800, or XAP 400 and works by triggering the execution of programmed commands from the XAP/PSR unit. Each button on the control panel is programmable to execute a single command or a series of commands. Button function is programmed using G-Ware software (see the XAP or PSR user manual). Each Control Panel fits inside a standard electrical wall box and must be installed according to local electrical codes.

Connecting the Control Panel

- Ensure you received a facia plate; a Control Panel assembly with mounting bracket and two RS-485 Phoenix four-pin connectors; two connector terminator blocks; a faceplate; two flat HD screws; two pan-head screws; and an electrical wall box (shown in Figures C.5 and C.6). If any parts are missing, please contact ClearOne.
- 2. Using DIP switches 1–4, assign a unique ID to the Control Panel. Refer to Figure C.2 for proper DIP switch settings. If you set an invalid address, all LEDs on the Control Panel will illuminate.
- Set DIP switch 8 to the on position if you are using just one Control Panel. If you
 have more than one Control Panel daisy-chained to the same Remote Panel
 connector, set only the last Control Panel's DIP switch 8 to on. Switches 5-7 are
 nonfunctional.
- 4. Turn off the XAP/PSR unit (unplug the unit).
- 5. Wire each end of a Cat. 5 cable to a connector terminator block. Use one twisted wire pair for the center and + connections (pins 2 and 3) and the other twisted pair for the ground and +15V connections (pins 1 and 4). Failure to correctly wire the connector can result in damage to the unit.

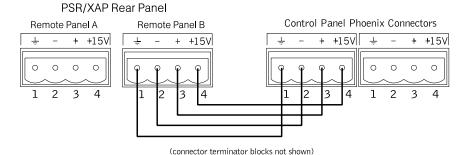


Figure C.3. Wiring the Control Panels

This equipment must be installed according to applicable local electrical codes.

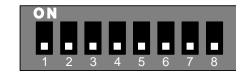


Figure C.1. DIP switches

		DIP Switch			
		1	2	3	4
	0	On	On	On	On
_	1	Off	On	On	On
þe	2 3	On	Off	On	On
Control Panel Number		Off	Off	On	On
ž	4	On	On	Off	On
<u>e</u>	5	Off	On	Off	On
Pai	6 7	On	Off	Off	On
ᇹ	7	Off	Off	Off	Or
ŧ	8	On	On	On	Off
Ō	9	Off	On	On	Off
U	10	On	Off	On	Off
	11	Off	Off	On	Off

Figure C.2. DIP switch settings

Control Panel Assembly Dimensions (both versions): 1.8"/4.6cm W x 4.125"

/10.5 cm L (not including faceplate or electrical box).

# of Control Panels	Maximum Distance
1	3,000 ft/914 m
2	2,500 ft/762 m
3	1,600 ft/488 m
4	1,200 ft/366 m
5	1,000 ft/305 m
6	800 ft/244 m

Figure C.4. Control panel distance chart

- Connect one connector terminator block to the Remote Panel on the XAP/PSR unit. Route the other end of the cable through the back of the electrical wall box and connect the terminator block to the Control Panel.
- 7. To use a second Control Panel, connect it to the unused Remote Panel connector on the XAP/PSR unit or the unused connector on the first Control Panel. You can daisy-chain up to six Control Panels to each Remote Panel connector. Total cable run depends on the number of Control Panels used. The distance information in the table at left is based on Cat. 5 cable with a nominal resistance of 27Ω per 1,000 feet (305 meters). All distances refer to total cable runs from a single Remote Panel connector. For information about extending beyond 800 feet (244 meters) total with six Control Panels, call Technical Support at 1-800-283-5936.
- 8. As shown in Figures C.5 and C.6, use the supplied pan-head screws to install the Control Panel PCB assembly to the electrical wall box.
- 9. To install the facia plate, position it over the conductive rubber switch pads on the PCB assembly, as shown in Figures C.5 and C.6.
- 10. Mount the faceplate over the rubber switch pads, using the two flat HD screws.

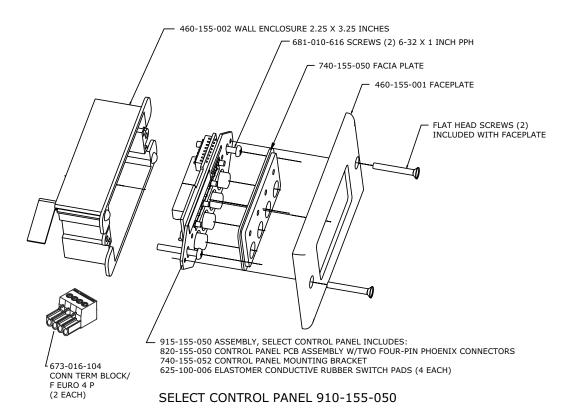


Figure C.5. Select Control Panel Assembly

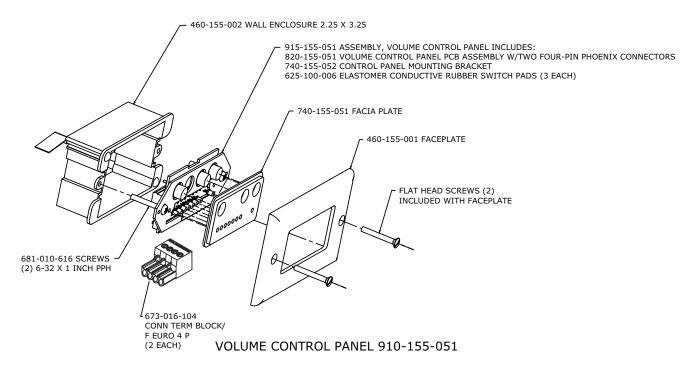


Figure C.6. Volume Control Panel Assembly

This equipment complies with the requirements of the European guidelines: 89/336/EEC "Electromagnetic Compatibility" and 93/68/EEC "Electrical operating material for use within specific voltage limits."

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

Appendix D: Accessories

Accessory	ClearOne Part Number
Tabletop Omni Microphone	910-103-160 (with cable)
Tabletop Uni Microphone	910-103-161 (with cable)
Button Omni Microphone	910-103-162 (black button)/910-103-163 (white button)
Button Uni Microphone	910-103-164 (black button)/910-103-165 (white button)
Delta Microphone	910-103-340
Acc. Kit, Side Trim	860-150-002
Wall Mount Speaker	910-103-010
Select Control Panel	910-155-050
Volume Control Panel	910-155-051
XAP IR Remote	910-170-150

Appendix E: Serial Commands

The XAP 800 accepts serial commands through the serial port or the expansion bus. The commands in this manual pertain only to the XAP 800. RS-232 serial port protocol is 9,600, 19,200, 38,400 (default), or 57,600 baud; 8 bits, 1 stop bit, no parity.

Conventions

The following typographic conventions are used in this document to describe the different serial commands. Use the Command structure section and the examples as a guide when creating your serial commands.

Convention	Description
<x></x>	Parameters enclosed in < > indicate a mandatory parameter.
[X]	Parameters enclosed in [] indicate an optional parameter.
1-8	Parameters separated by a - indicate a range between the values.
4,7,9	Parameters separated by a , indicate a list of available values.
EREF	Words in uppercase bold indicate command text.
DEVICE	Indicates the device type and device number on the expansion bus network. It is composed of a
	device type character and a device number. The device type for the XAP 800 is always 5 and the
	device ID will always be 0-7, or * (to select all 800 units).

Command structure

Commands can be either UPPER CASE or lower case. Also, extra spaces or tabs between arguments in text commands are allowed. Return values are always in upper case. In order for a command to be recognized by the serial port, the command must be terminated by a carriage return.

The structure of serial commands is as follows: #DEVICE **COMMAND** [X] [X]

	follow
[X] [X]	represents any additional options in the order that they appear in the command descriptions that
COMMAND	is the command text
DEVICE	represents the device type and device number
#	indicates the start of a command line

Example

A command to disable automatic gain control for Mic 2 on a XAP 800 device "0" will have the command line: #50 AGC 2 M 0. In this command line, 5=XAP 800, 0=unit 0, AGC=command, 2=channel, M=Mic Input group, 0=off state. If a command calls for a "null" value, leave a blank in the command line. For example, "#50 AGC 2 M" will return the current AGC state of Mic 2 on device 50.

Command responses will have a carriage return line feed. Example: #50 AGC 2 M 0 carriage return line feed.

Groups and channels

If a channel has an alpha value of "*", the command is to be applied to all channels. For example, a group value of M and a channel value of * would mean that the command is to be applied to all channels of group M (mic inputs). The following table shows the alpha representations for the different groups and the channels that are available for each product.

	Group	XAP 800/PSR1212 Channel Range	XAP TH2 Channel Range	XAP 400 Channel Range
Inputs	ĺ	1–12		1–8
Outputs	0	1–12		1-9 (9 is power amp)
Mic Input	М	1–8		1–4
Gating Group	G	1-4, A-D		1–4, A-D
Processing	Р	A–H		A-D
Ambient	А	1–8		1-4
Line Inputs	L	9–12		5–8
Expansion Bus	Е	O-Z		O-Z
Unit	U	0	0	0
GPIO	Υ	0	0	0
Matrix	X	0		0
Wall plates	W	0-11		0-11
Presets	S	1–32		1–32
Macros	С	1-255		1-255
Unknown	Ν			
Transmit	Т		1	1
Receive	R		1	1
Virtual Reference	В	1–4		1–4

Type and device IDs

Type ID	Unit type	Device ID range
4	PSR1212	0–7
5	XAP 800	0–7
6	XAP TH2	0–F
7	XAP 400	0–7

Meter type definitions

Alpha	Level position for Mics	Level position for Line Inputs	Level position for Outputs and Telco	Level Position for Processors	Level Position for Telco Receives
		Total and an paris	Transmits		10100110001100
1	Input level	Input level	Input level	Level into processor	Input Level
А	Level after gain adjustment, but before filter	Level after gain adjustment	Level after gain adjustment	Amount of compression	Level after gain adjustment
Ν	Level after filter but before gate (non-gated level)	N/A	N/A	Level after compressor and filters	N/A
G	Level after gate (gated level)	N/A	N/A	N/A	N/A
R	Echo Return Loss	N/A	N/A	N/A	Telco Echo Return Loss
E	Echo Return Loss Enhancement	N/A	N/A	N/A	Telco Echo Return Loss Enhancement
Т	ERL + ERLE	N/A	N/A	N/A	TERL + TERLE
D	Impulse Duration (Tail Time)	N/A	N/A	N/A	N/A
С	AGC	AGC	N/A	N/A	AGC
Υ	Pre AGC RMS meter	Pre AGC RMS meter	N/A	N/A	Pre AGC RMS meter
Z	Post AGC RMS meter	Post AGC RMS meter	N/A	N/A	Post AGC RMS meter

Serial command error codes

Error number	Text message	Explanation/Solution
1	Memory error	The box is out of internal memory. Power cycle the box.
2	No command found	A command was not found in the string.
3	Unknown command response	A command was executed on a different device type that this box cannot display. The command dictionary needs to be updated.
4	Not implemented	The command is not implemented.
5	Argument error	The command had an argument that was out of range.
6	Unknown command	The command is unknown to this unit.
7	Bad checksum	The binary command's checksum is wrong.
8	Preset of macro invalid	A preset or macro failed to program because it is too large or because its comand list contained an invalid command.
10	Queue error	The internal command queue is full. Enable flow control and use all five pins on the serial port.
11	Command too big	The binary command is too large.
12	Unit is locked	Unlock the unit with the proper password.

XAP 800 Serial commands

Command	Function	Command	Function
AAMB	Selects/reports adapt ambient setting	LOCK	Selects/reports the state of the preset and
AEC	Selects/reports acoustic echo canceller setting		macro lock. When on, the lock prevents presets
AGC	Enable/disables AGC		and macros that have been flagged from being
AGCSET	Selects/reports AGC settings on inputs		altered in any way.
AMBLVL	Selects/reports ambient level	LOCKPRST	Selects/reports whether the lock is applied to a
BAUD	Selects/reports the baud rate of the serial port		preset or macro. If a preset or macro has the
CGROUP	Selects/reports compressor group setting		lock applied, it can only be changed if the unit
CHAIRO	Selects/reports chairman override setting		is unlocked with the password.
COMPRESS	Sets/reports compressor on audio processing	LOCKPWD	Selects/reports the password for the
	channel		preset/macro lock. This can only be changed if
COMPSEL	Selects/reports compressor activity for		the unit is unlocked.
	processor	LMO	Selects/reports Last Mic On mode
DECAY	Sets/reports decay rate	LVL	Reports in, out, or processor level
DELAY	Sets/reports delay rate	LVLREP0RT	Selects/reports level status
DELAYSEL	Selects/reports processor channel delay	LVLRRATE	Sets the level report rate for the unit
DFLTM	Sets/reports default meter	MACR0	Executes macro or reports last macro
DID	Selects/reports device ID		executed
DSPVER	Reports DSP firmware version	MASTER	Reports the mode of the unit
FILTER	Selects/reports input/processor channel filter	MAX	Changes/reports max gain setting for in, out,
	setting		processor block
FILTSEL	Enables/disables filters on input/processor	MDMODE	Enables/disables the modem mode for the unit
	channel	MIN	Changes/reports minimum gain setting for in,
FLOW	Selects/reports the flow control of the serial		out, processor block
	port	MINIT	Sets/reports modem initialization string of
FMP	Sets/reports 1st Mic Priority for mic gating		serial port
	group	MINMAX	Changes/reports min and max gain from in,
FPP	Sets/reports current passcode setting		out, processor block
GAIN	Changes/reports gain for in, out, or process.	MLINE	Selects/reports coarse gain adjustments on
GATE	Reports gate status of channels 1–8		Inputs 1–8
GHOLD	Selects/reports hold time setting	MMAX	Selects/reports max # of mics for each mic
GMODE	Selects/reports gating mode setting		group
GOVER	Selects/reports gating override setting	MPASS	Sets passcode setting when using modem
GRATI0	Selects/reports gate ratio setting		mode
GREPORT	Selects/reports gate status report frequency	MTRX	Selects/reports matrix routing of an in. to out.
GRPSEL	Selects/reports input gating group assignments	MTRXLVL	Selects/reports matrix level at the cross point
LABEL	Selects/reports label of specified channel	MUTE	Sets/reports mute status
LFP	Sets/reports status of front panel access	NCD	Selects/reports noise cancellation amount for
			each mic channel

Command	Function	Command	Function
NCSEL	Selects/reports noise cancellation on/off for	REFSET	Selects/reports the output the reference channel
	each mic channel		tracks
NLP	Selects/reports NLP for each mic channel	SERECH0	Selects/reports the serial echo of the RS-232
NOM	Selects/reports NOM setting on output	SERMODE	Selects/reports the serial mode of the RS-232
	channels	SFTYMUTE	Selects/reports the state of the safety mute.
OFFA	Selects/reports off attenuation mode for		When on, the safety mute holds all outputs in a
	Inputs 1–8		muted state.
PAA	Selects PA adapt mode for specified input	SIGGEN	Selects/reports signal generator activation
PP	Selects/reports phantom power setting	SIGTOUT	Sets the signal generator time out for the unit
PRESET	Executes preset or report last executed preset	SLVL	Selects/reports mic auto level setting
PRGSTRING	Sets/reports a programmed string	STRING	Executes a string for the RS-232 port
RAMP	Start/stops the gain ramp for an input, output,	TOUT	Selects/reports the title screen inactivity time
	or assignable processing block		out
REFSEL	Selects/reports PA adapt mode for mic	UID	Reports unit ID (read only)
	outputs	VER	Reports unit version (read only)

AAMB - Adaptive Ambient Mode

This command selects/reports the setting of adaptive ambient.

Command form: DEVICE **AAMB** < Channel > < Group > [Value] :

Argument details

Name	Description	Device	Type	ID
Device	0-7 or * to select all units	DCD4040	4	0.7
AAMB	Command form	PSR1212	4	0 - 7
Channel	Range 1–8 (Selects input)	XAP 800 XAP TH2	5 6	0-7 0-F
		XAP 400	7	0-7
Group	M (Selects mic group)	7/7/1 400	,	0 1
Value	0 = Off, $1 = On$, $2 = Toggle$, Null to query in text			

Example: #51 AAMB 2 1 On XAP 800 unit 1 (#51), adaptive ambient (AAMB)

for mic channel 2 (2) is set on (1).

AEC - Acoustic Echo Canceller Enable/Disable

This command selects/reports the setting of acoustic echo canceller.

Command form: DEVICE **AEC** < Channel > [Value]

Argument details

wame	Description
Device	0–7 or * to select all units
AEC	Command form
Channel	Range 1–8 (selects input)
Group	M (selects mic group)
Value	0 = Off, $1 = On$, $2 = Toggle$, Null to query in text

Example: #50 AEC 1 0 On XAP 800 unit 0 (#50) the echo canceller (AEC) for

mic channel 1 (1) is set to off (0).

AGC - Automatic Gain Control

This command selects/reports the setting of automatic gain control.

Command form: DEVICE **AGC** < Channel > < Group > [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
AGC	Command form
Channel	See Groups and Channels on page 97
Group	1,3,7 (I,M,L)
Value	0 = Off, $1 = On$, $2 = Toggle$, Null to query in text

Example: #54 AGC 1 M 0 On XAP 800 unit 4 (#54), the automatic gain control

(AGC) on mic (M) channel 1 is set to off (0).

AGCSET - Automatic Gain Control Adjust

This command selects/reports the settings of the AGC on the input channels. Command form $\ \ \, \text{DEVICE AGCSET} < \text{Channel} > < \text{Group} > \text{[Threshold]}$

[Target] [Attack] [Gain]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
AGCSET	Command form	
Channel	See Groups and Channels on page 97	
Group	1,3,7,(I,M,L)	
Threshold	-50 to 0	dB
	Null to query in text	
Target	-30 to 20	dB
Attack	0.10-10.00 (select in .1s intervals)	S
Gain	0.00–18.00	dB

Device	Type	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0 - F
XAP 400	7	0-7

Example: #55 AGCSET 1 M -10 4 .5 18 On XAP 800 device 5 (#55) the automatic gain control (AGCSET) for mic (M) channel 1 (1) is set to have a threshold of -10dB rms, a target of 4dB rms, a response time of 500ms (.5), and a maximum gain of 18dB.

AMBLVL - Ambient Level Adjust

Description

This command selects/reports the setting of the ambient level. Command form: DEVICE **AMBLVL** < Channel > [Value]

Argument details

Name

Device	0–7 or * to select all units
AMBLVL	Command form
Channel	Range 1–8 (selects input channel)
Value	-80.0 to 0 (sets ambient level in dB), Null to return current level

Example: #53 AMBLVL 1 -30 On XAP 800 unit 3 (#53), the ambient level

(AMBLVL) for mic input 1 is set to -30dB.

BAUD - Baud Rate

This command selects/reports the baud rate of the serial port.

Command form: DEVICE **BAUD** [Value]

Argument details

Name Description

Device 0–7 or * to select all units

BAUD Command form

Value 9600, 19200, 38400, 57600

(Null to guery in text)

Example: #56 BAUD 38400 On XAP 800 unit 6 (**#56**), the baud rate (**BAUD**)

for the RS-232 port is set to 38,400 (38400).

CGROUP - Compressor Group Select

This command selects/reports the setting of the compressor group on each assignable processing channel.

Command form: DEVICE CGROUP < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

CGROUP Command form

Channel range A–H (selects processing channel)

Value 0 = none, 1 = compressor group 1, 2 = compressor group 2,

3 = compressor group 3, 4 = compressor group 4,

null to return the current mode

Example: #52 CGROUP A 2 On XAP 800 unit 2 (#52), the compression group

(CGROUP) for processing channel A is 2.

CHAIRO - Chairman Override Mode

This command selects/reports the setting of chairman override.

Command form: DEVICE CHAIRO < Channel > [Value]

Argument details

Name Description

Device 0-7 or * to select all units

CHAIRO Command form

Channel Range 1–4 (selects mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null to return current state

Example: #57 CHAIRO 3 1 On XAP 800 unit 7 (#57), chairman override

(CHAIRO) for mic channel 3 is set on (1).

COMPRESS - Compressor Adjust

This command selects/reports the setting of the compressor on processing channels.

Command form DEVICE **COMPRESS** < Channel > [Threshold] [Ratio] [Attack] [Release] [Gain]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
COMPRESS	Command form	
Channel	Range A-H (selects processing channel)	
Threshold	-30 to 20, Null to return current value	dB
Ratio	1 to 20	
Attack	0.00 to 100.00 (select in .5ms intervals)	ms
Release	100 to 2000 (select in 5ms intervals)	ms
Gain	0.00 to 20.00	dB

Example: #51 COMPRESS A 6 5 25 250 3 On XAP 800 unit 1 (#51), the compression (COMPRESS) within processing channel A is set to have a threshold of 6dB, a ratio of 5:1 (5), an attack time of 25ms, a release time of 250ms, and a gain of 3dB.

Туре	ID
4	0-7
5	0-7
6	0 - F
7	0-7
	4 5 6

COMPSEL - Compression Select

Description

This command selects/reports the compressor activation of each assignable processing channel.

Command form: DEVICE COMPSEL < Channel > [Value]

Argument details

Name

Device	0–7 or * to select all units
COMPSEL	Command form
Channel	Range A-H (selects processing channel)
Value	0 = Off, $1 = On$, $2 = Toggle$, Null returns current state

Example: #50 COMPSEL A 1 On XAP 800 unit 0 (**#50**), the compression (**COMPSEL**) within processing channel **A** is set on (**1**).

DECAY - Decay Adjust

This command selects/reports the setting of the decay rate for a specified input.

Command form: DEVICE **DECAY** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

DECAY Command form

Channel Range 1–8 (selects mic input)

Value 1 = Slow, 2 = Medium, 3 = Fast, Null to return current state

Example: #53 DECAY 1 3 On XAP 800 unit 3 (#53), the decay rate (DECAY)

for mic channel 1 is set to fast (3).

DELAY - Delay Adjust

This command selects/reports the delay time of each assignable processing channel. Command form: DEVICE **DELAY** < Channel > [Value]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
DELAY	Command form	
Channel	A-H (select processing channel)	
Value	0.00 to 500 (selects delay)	ms
	Null to return current state	

Example: #56 DELAY A 200 On XAP 800 unit 6 (**#56**) the delay (**DELAY**) for processing channel **A** is set to **200**ms.

DELAYSEL - Delay Select

This command selects/reports the delay activation of an assignable processing channel.

Command form: DEVICE **DELAYSEL** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

DELAYSEL Command form

Channel A–H (select processing channel)

Value 0 = Off, 1 = On, 2 = Toggle, Null to return current state

Example: #54 DELAYSEL A 1 On XAP 800 unit 4 (#54) the delay

(DELAYSEL) within processing channel A is enabled (1).

DFLTM - Default Meter

This command selects/reports the setting of the default meter.

Command form: DEVICE **DFLTM** [Channel] [Group] [Position]

Argument details

Name	Description
Device	0–7 or * to select all units
DFLTM	Command form
Channel	1–12
Group	I = Inputs, $O = Outputs$, $M = Mic Inputs$, $L = Line Inputs$
Position	I, A, N, G, as applicable for group
	(see Meter Type definitions, page 98)

Example: #55 DFLTM 8 O A On XAP 800 unit 5 (**#55**), the default meter (**DFLTM**) is set to output (**O**) **8** after the gain adjustment (**A**).

Device	Type	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0 - F
XAP 400	7	0-7

DID - Device ID

This command selects/reports the device ID. Command form: DEVICE **DID** [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
DID	Command form
Value	0–7 (select device ID)

Example: #57 DID 0 On XAP 800 unit 7 (#57), the device ID (DID) is set to 0.

DSPVER - DSP Version

This command reports the version of the DSP code in the unit. the version is a date and time stamp. This command is read only.

Command form: DEVICE **DSPVER** [value]

Argument details

Name	Description
Device	0-7 or * to select all units
DSPVER	Command form
Value	Null

Example: **#55 DSPVER** The XAP 800 unit 5 (**#55**) will return the DSP version (**DSPVER**).

FILTER - Filter Adjust

This command selects/reports the setting of filters.

 $\label{eq:command_command} \mbox{Command form:} \quad \mbox{DEVICE } \mbox{FILTER} < \mbox{Channel} > < \mbox{Group} > < \mbox{Node} > \mbox{[Type]}$

[Frequency] [Gain] [Bandwidth]

Argument details

Name	Description	
Device	0-7 or * to select all units	
FILTER	Command form	
Channel	See Groups and Channels, page 97	
Group	See Groups and Channels, page 97	
Node	1-4 (selects mic input filter)	
	1–15 (selects processing channel filter)	
Name	Description	Units
Туре	$0 = \text{None}, \ 1 = \text{All Pass}, \ 2 = \text{Low Pass},$	
	3 = High Pass, 4 = Low Shelving,	
	5 = High Shelving, 6 = Parametric Equalizer,	
	7 = CD Horn, 8 = Bessel Crossover,	
	9 = Butterworth Crossover,	
	10 = Linkwitz-Riley Crossover, 11 = Notch,	
	Null to return the current mode	
Frequency	O for Null (Type 0)	Hz
	20 to 20,000 (Type 1-6, 8-11)	Hz
	500 to 5,000 (Type 7)	Hz
Gain	O for Null (Type 0–3, 7, 11)	dB
	-15.00 to 15.00 (Type 4-6)	dB per octave
	12, 18, 24 (Type 8–9)	dB per octave
	12, 24 (Type 10)	dB per octave
	-80 nonadjustable (Type 11)	
Bandwidth	0 to Null (Type 0–5, 7)	
	.05-5.00 (Type 6, 11)	
	2 = low pass, $3 = high pass (Type 8–10)$	

Examples

#50 FILTER 1 M 3 2 200 On XAP 800 unit 0 (**#50**) the filter (**FILTER**) for mic (**M**) channel **1**, node **3** is set as a low-pass filter (**2**) at **200**Hz.

#51 FILTER B P 2 4 3000 -10 On XAP 800 unit 1 (**#51**) the filter (**FILTER**) for processing (**P**) channel **B**, node **2**, is set as a low shelving (**4**) filter at **3000**Hz and a gain of **-10**dB.

#52 FILTER 3 M 2 6 5000 -15 1.00 On XAP 800 unit 2 (**#52**), the filter (**FILTER**) for mic (**M**) channel **3**, node **2**, is set as a PEQ (**6**) with a center frequency of **5000**Hz, a bandwidth of **1.00**, and a gain of **-15**dB.

#53 FILTER B P 2 7 4000 On XAP 800 unit 3 (**#53**), the filter (**FILTER**) for processing (**P**) channel **B**, node **2**, is set as a CD Horn (**7**) at a frequency of **4000**Hz.

FILTSEL - Filter Select

This command turns on and off the filters on input and audio processing channels. Command form: DEVICE **FILTSEL** < Channel > < Group > < Node > [Value]

Argument details

Name	Description
Device	0–7 or * to select all units
FILTSEL	Command form
Channel	See Groups and Channels, page 97
Group	M = Mic Inputs, $P = Processing Channels$

1-15, or * for all (selects processing channel filter)

Value 0 = Off, 1 = On, 2 = Toggle, Null to return current state

Example: #54 FILTSEL B P 2 1 On XAP 800 unit 4 (**#54**), the filter (**FILTSEL**) on processing (**P**) channel **B**, node **2**, is set to on (**1**).

FLOW - Flow Control

This command selects/reports the flow control of the serial port on the unit.

Hardware flow control is implemented using DTR and DSR.

Command form: DEVICE FLOW [Value]

Argument details

Name	Description
Device	0–7 or * to select all units
FLOW	Command form
Value	0 = Off, $1 = On$, $2 = Toggle$, Null to return current state

Example: #56 FLOW 1 On XAP 800 unit 6 (**#56**), the flow control (**FLOW**) to the RS-232 port is set to on (1).

FMP - First Mic Priority Mode

Description

This command selects/reports first Mic priority mode for a gating group. Command form: DEVICE **FMP** < Channel > [Value]

Argument details

Name

Device	0–7 or * to select all units
FMP	Command form
Channel	1-4, A-D (selects gating group)

Value 0 = Off, 1 = On, 2 = Toggle, Null returns the current mode

Example: #55 FMP A 1 On XAP 800 unit 5 (**#55**), the first mic priority mode (**FMP**) for gating group **A** is set to on (**1**).

FPP - Front Panel Passcode

This command sets and reports the current passcode setting for the unit. Each character in the password represents a button on the front panel. See button assignment table below. When the user is requested to unlock the front panel, they must press the buttons in the sequence of the stored password.

Command form: DEVICE **FPP** <char1><char2><char3><char4><char5>

Button assignment

Value	Button represented
1	Up arrow button
2	Enter button
3	ESC button
4	Down arrow button
5	Meter button

Argument details

Name	Description
Device	0–7 or * to select all units

FPP Command form

Char 1–5 (see button assignments)

CLEAR will clear the passcode Null will return current passcode

Example: #55 FPP 12345 On XAP 800 unit 5 (#55), the front panel passcode (FPP) is set to Up Arrow (1), Enter (2), Esc (3), Down Arrow (4), Meter (5).

GAIN - Gain Adjustment

This command changes or reports back the input gain for a channel. Command form: DEVICE **GAIN** < Channel > < Group > [Value A/R]

Argument details

Name	Description
Device	0-7 or * to select all units
GAIN	Command form
Channel	See Groups and Channels, page 97
Group	I = Inputs, $O = Outputs$, $M = Mic Inputs$,
	P = Processing Channels, L = Line Inputs
Value	-99 to 99 *, Null to return the current gain
A/R	A = Absolute, R = Relative, NuII = Relative

Example: #51 GAIN 4 O 12 A On XAP 800 unit 1 (#51), the GAIN for Output

(O) 4 is set to 12dB absolute (A).

Values indicate entry range only. Actual internal range of the gain stage is from -65 to 20. Absolute values will be limited to the internal gain range and values below -65 will mute the channel.

GATE - Gate Status

This command reports the gate status of mics. This command is read only. Command form: DEVICE **GATE**

Device	Type	ID	Argument details		
PSR1212	4	0-7	Name	Description	
XAP 800	5	0-7		•	
XAP TH2	6	0-F	Device	0-7 or * to select all units	
XAP 400	7	0-7	GATE	Command form	

The command will return the gate status of mic inputs 1–8 in hexadecimal.

Example:

If	Hex # returned			Неха	adecima	ıl Descri	ption		
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Mic 8	Mic 7	Mic 6	Mic 5	Mic 4	Mic 3	Mic 2	Mic 1
Mics 1 and 2 are gated on	03	0	0	0	0	0	0	1	1
Mics 1 and 3 are gated on	05	0	0	0	0	0	1	0	1
Mics 1, 4, and 7 are gated on	4 9	0	1	0	0	1	0	0	1
Mics 3-6 and 8 are gated on	ВС	1	0	1	1	1	1	0	0
			First	digit			Secor	ıd digit	

GHOLD- Gate Hold Time Adjust

This command selects/reports the setting of hold time.

Command form: DEVICE **GHOLD** < Channel > [Value]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
GHOLD	Command form	
Channel	See Groups and Channels, page 97	
Value	0.10-8.00	S
	Null to return the current hold time	

Example: #50 GHOLD 1 .3 On XAP 800 unit 0 (**#50**), the hold time (**GHOLD**) for mic channel **1** is 300ms (**.3**).

GMODE - Gating Mode

This command selects/reports the setting of gating mode. Command form: DEVICE **GMODE** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

GMODE Command form
Channel 1–8 (select mic input)

Value 1 = auto, 2 = manual on, 3 = manual off, Null= current mode

Example: #55 GMODE 1 2 On XAP 800 unit 5 (#55), mic channel 1 is set to a

gating mode (GMODE) if manual on (2).

GOVER - Gating Override

This command selects/reports the setting of gating override.

Command form: DEVICE **GOVER** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

GOVER Command form
Channel 1–8 (select mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null = current mode

Example: #56 GOVER 1 0 On XAP 800 unit 6 (#56), the gating override

(GOVER) on mic channel 1 is set to off (0).

GRATIO - Gate Ratio Adjust

This command selects/reports the setting of the gate ratio.

Command form: DEVICE **GRATIO** <Channel > [Value]

Argument details

Name Description Units

Device 0–7 or * to select all units

GRATIO Command form
Channel 1–8 (select mic input)

Value 0 to 50 dB

Null to return current ratio

Example: **#52 GRATIO 1 15** On XAP 800 unit 2 (**#52**), the gate ratio

(GRATIO) for mic channel 1 is set to 15dB.

Gate report sends a report on every gate change. If no mics are gated on, the report will be sent every 10 seconds.

GREPORT - Gate Report

This command selects/reports the gate status. Command form: DEVICE GREPORT < Value>

Argument details

Name Description

Device 0-7 or * to select all units

GREPORT Command form

0 = Off, 1 = On, 2 = ToggleValue

Example: #53 GREPORT 1 On XAP 800 unit 3 (#53), the gate reporting

(GREPORT) is set to on (1).

GRPSEL - Gating Group Select

This command selects/reports which gating group each input is assigned. There can only be one selection per input.

Command form: DEVICE GRPSEL < Channel > [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
GRPSEL	Command form
Channel	1–8 (selects mic input)
Value	1-4, A-D (selects gating group), Null to return current value

Example: #54 GRPSEL 1 A On XAP 800 unit 4 (**#54**), mic channel **1** is assigned to gating group (GRPSEL) A.

LABEL - Label

This selects/reports the label of the specific channel identified in the unit. Command form: DEVICE **LABEL** < Channel > < Group > [In/Out] [String]

Argument details

Name	Description
Device	0–7 or * to select all units
LABEL	Command form
Channel	See Groups and Channels, page 97
Group	I, O, M, G, P, L, E, U, W, S, C (see page 97)
In/Out	0 = Output, $1 = Input$ (For Expansion Bus groups only)
String	String of up to 20 characters representing the label text.
	Null to query and CLEAR to clear the label

Example: #57 LABEL 1 M WIRELESS On XAP 800 unit 7 (#57), the label

(LABEL) for mic (M) channel 1 is WIRELESS.

LFP - Lock Front Panel

This command sets and reports front panel access for the unit. When the unit is locked, access is not allowed to the unit until the unit is unlocked.

Command form: DEVICE LFP [Value]

Argument details

Name Description

Device 0–7 or * to select all units

LFP Command form

Value 0 = Unlock Panel, 1 = Lock Panel, 2 = Toggle Value,

3 = Lock when timed out

Example: #54 LFP 1 The XAP 800 unit 4 (#54), front panel (LFP) is locked (1).

LMO - Last Mic On Mode

This command selects/reports last Mic on mode for the specified gating group. Command form: DEVICE **LMO** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

LMO Command form

Channel See Groups and Channels, page 97
Value 0 = Last Mic Mode disabled

1–8 = Select Last Mic mode on specified channel

* = Last mic to stay on, Null to return the current mode

Example: #50 LMO A 0 On XAP 800 unit 0 (**#50**), the Last Mic Mode (**LMO**) for gating group **A** is disabled (**0**).

LOCK - Preset and Macro Lock

This command selects/reports the state of the preset and macro lock. When on, the lock prevents flagged presets and macros from being altered in any way.

Command form: DEVICE **LOCK** [Value][Password]

Argument details

Name Description

Device 0–7 or * to select all units

LOCK Command form

Value 0 = Off, 1 = On, 2 = Toggle

Password Only needs to be entered when changing the lock. For security,

this value is not returned.

Example: #51 LOCK 1 "password" On XAP 800 unit 1 (#51), any presets or macros that have been flagged with the LOCKPRST command will be locked (LOCK) and password protected (1) with the macro/preset password (LOCKPWD).

LOCKPRST - Apply the lock to a preset or macro

Selects/reports whether the lock is applied to a preset/macro. If a preset/macro has the lock applied, it can only be changed if unlocked with the password. Command form: DEVICE **LOCKPRST** < Channel > < Group > [Value]

Argument details

Name	Description
Device	0–7 or * to select all units
LOCKPRST	Command form
Channel	1-32 (Preset) or 1-255 (Macro)
Group	S = Preset, C = Macro
Value	0 = Off, $1 = On$, $2 = Toggle$, $Null = Query$ (value is only
	returned if unit is unlocked)

Device	Type	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0-F
XAP 400	7	0-7

Example: #52 LOCKPRST 5 S 1 On XAP 800 unit 2 (#52), preset 5 (5 S) will be protected (1) whenever the lock option is enabled.

LOCKPWD - Set preset/macro password

Selects/reports the password for the preset/macro lock. This can only be changed if unit is unlocked.

Command form: DEVICE LOCKPWD [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
LOCKPWD	Command form
Value	1–12 characters
	Null = Query (value is only returned if unit is unlocked)

Example: #53 LOCKPWD mypassword On XAP 800 unit 3 (#53), the macro/preest password (LOCKPWD) is set to mypassword.

LVL - Level

This command reports the level. This command is read only. Command form: DEVICE LVL < Channel > < Group > [Position] [Value]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
LVL	Command form	
Channel	See Groups and Channels, page 97	
Group	See Groups and Channels, page 97	
Position	See Meter Type Definitions, page 98	
Value	-99.99 to 99.99	dB
	Sent with Null in text, value returned	

Example: #51 LVL 8 L I 3 The level (LVL) received from XAP 800 unit 1 (#51) for line level (L) Input 8 at the Input stage (I) is 3dB.

LVLREPORT - Level Report

This command selects level status reporting.

Command form: DEVICE LVLREPORT < Channel > < Group > [Position] [Value]

Argument details

Name Description

Device 0–7 or * to select all units

LVLREPORT Command form

Channel See Groups and Channels, page 97
Group See Groups and Channels, page 97
Position See Meter Type Definitions, page 98

Value 0 = Off (Delete level from list of levels to be reported)

1 = On (Add specified level to list of levels to be reported)

2 = Toggle

Example: #52 LVLREPORT 8 L I 1 On XAP 800 unit 2 (#52), the level (LVLREPORT) of line level (L) input 8 at the input stage (I) is to be added (1) to the report.

LVLRRATE - Level Report Rate

Sets the level report rate for the unit and activates/deactivates level repeating. Command form: DEVICE **LVLRRATE** [Value]

Argument details

Name	Description	Units
INALLIC	Describtion	Ullita

Device 0–7 or * to select all units

LVLRRATE Command form

Value 0 = Turn off reporting but leave current list

1 = Turn off reporting and clear the list

50 to 1000 = Set Rate (1 meter every x ms) ms

Null to return current value

Example: #53 LVLRRATE 100 On XAP 800 unit 3 (**#53**), the level report rate (**LVLRRATE**) is set to **100**ms.

The response indicates execution of the macro, but does not indicate that each command within the macro was executed.

MACRO - Macro Execution/Reporting

This command executes a specified macro or reports the last macro executed. There are 255 macros that can be specified.

Command form: DEVICE MACRO [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
MACR0	Command form

Value 1-255 Value to execute user macros

Example: #55 MACRO 1 On XAP 800 unit 5 (#55), Macro (MACRO) 1 is run.

MASTER - Expansion Bus Master Mode

This command reports the mode of the unit. The mode can be Master or Slave. Command form: DEVICE **MASTER** [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
MASTER	Command form
Value	1 = Master, $2 = Slave$, $Null = Current mode of the unit$

Example: #56 MASTER 2 On XAP 800 unit 6 (**#56**), the **MASTER** mode is set to slave (2)

MAX - Maximum Gain Setting

This command changes or reports back the maximum gain setting for an input, output or assignable processing block.

Command form: DEVICE MAX < Channel > < Group > [Value]

This setting will affect all relative gain adjustments.

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
MAX	Command form	
Channel	See Groups and Channels, page 97	
Group	I, O, M, P, L	
Value	-65.00 to 20.00	dB
	Null to return the current setting	

Example: #51 MAX 2 M 10 On XAP 800 unit 1 (**#51**), the maximum (**MAX**) relative gain setting for mic (**M**) channel **2** is **10**dB.

MDMODE - Modem Mode

This command enables or disables the modem mode for the unit. When the modem mode is enabled, the modem initialization string is sent out the serial port and the serial port now requires a password before a command is processed. After five minutes of serial inactivity the passcode will be requested to continue serial activity.

Command form: DEVICE **MDMODE** [Value]

Argument details

Name Description

Device 0–7 or * to select all units

MDMODE Command form

Value 0 = Off, 1 = On, 2 = Toggle, Null = current modem mode state

Example: #57 MDMODE 1 On XAP 800 unit 7 (#57), the modem mode

(MDMODE) is on (1).

MIN - Minimum Gain Setting

This command changes or reports back the minimum gain setting for an input, output or assignable processing block.

Command form: DEVICE MIN < Channel > < Group > [Value]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
MIN	Command form	
Channel	See Groups and Channels, page 97	

Group I, 0, M, P, L Value -65.00 to 20.00

Null to return the current setting

Example: #54 MIN 2 M -10 On XAP 800 unit 4 (**#54**), the minimum (**MIN**)

dΒ

relative gain setting for mic (M) channel 2 is -10dB.

MINIT - Modem Initialization String

This command sets/reports the modem initialization string of the serial port when in modem mode.

Command form: DEVICE MINIT [String]

Argument details

Name	Description
Device	0-7 or * to select all units
MINIT	Command form
String	1-80 characters (select string characters to be sent to the modem
	when the unit is initialized
	CLEAR = clears the modem initialization string
	Null - Current string

Null = Current string

Device	Туре	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0-F
XAP 400	7	0-7

Example: #56 MINIT ATZ On XAP 800 unit 6 (**#56**), the modem initialization string (**MINIT**) is **ATZ**.

MINMAX - Minimum and Maximum Gain Setting

This command changes or reports back the minimum and maximum gain setting for an input, output or assignable processing block.

Command form: DEVICE **MINMAX** < Channel > < Group > [Minimum] [Maximum]

Argument details

Name

	•
Device	O-7 or * to select all units
MINMAX	Command form
Channel	See Groups and Channels
Group	I, O, M, P, L
Minimum	-65.00 to 20.00, Null to return current settings
Maximum	-65.00 – 20.00

Description

Example: #55 MINMAX 2 M -12 10 On XAP 800 unit 5 (**#55**), the minimum and maximum (**MINMAX**) relative gain settings for mic (**M**) channel **2** are **-12**dB and **10**dB respectively.

MLINE - Mic/Line Adjust

This command selects/reports the setting of coarse gain adjustment on the input channels 1-8. The three settings are OdB, 25dB, and 55dB.

Command form: DEVICE MLINE < Channel > [Value]

Argument details

Name Description

Device 0-7 or * to select all units

MLINE Command form

Channel 1-8 (selects mic inputs)

Value 0 = OdB (line level), 1 = 55dB, 2 = 25dB, Null = current level

Example: #53 MLINE 1 2 On XAP 800 unit 3 (#53), the mic/line (MLINE)

setting for input 1 is 25dB (2).

MMAX - Maximum Number of Microphones

This command selects/reports the maximum number of microphones for each gating group.

Command form: DEVICE MMAX < Channel > [Value]

Argument details

Name Description

Device 0-7 or * to select all units

MMAX Command form

Channel 1-4, A-D (gating groups)

Value 0 = Unlimited, 1-8 = Maximum number of mics

Null = Current maximum number of microphones

Example: #52 MMAX A 4 On the XAP 800 unit 2 (#52), the max number of mics (MMAX) in gating group A that are allowed to gate on at any one time is 4.

MPASS - Modem Password

This command sets the current password setting for the unit when using modem mode. The password must be entered in twice.

Command form: DEVICE MPASS [String]

Argument details

Name Description

Device 0-7 or * to select all units

MMAX Command form

0-12 characters, CLEAR = to clear the current password String

Null to report the current password

Example: #50 MPASS GENTNER On XAP 800 unit 0 (#50), the modem

password (MPASS) is set to GENTNER.

Once the command is given, the unit responds by echoing back command, followed by "RE-ENTER PASSWORD" string. The command must then be re-entered exactly as entered previously. Then, the command will be echoed back, followed by an "OK," indicating that the password has been changed.

SRC = sourceDEST = destination CHNL = channel

GRP = group

MTRX - Matrix

This command selects/reports the matrix routing of an input to an output.

Command form: DEVICE MTRX <SRC CHNL> <SRC GRP> <DEST CHNL>

<DEST GRP> [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
MTRX	Command form
SRC CHNL	See Groups and Channels, page 97
SRC GRP	I, M, P, L, E
DEST CHNL	See Groups and Channels, page 97
DEST GRP	0, P, E
Value	0 = Cross point off
	1 = Cross point on (not valid for mic sources)
	2 = Cross point toggle (not valid for mic sources)
	3 = Non-gated (mic sources only)
	4 = Gated (mic sources only)\
	Null = Current mode

Example: #57 MTRX 1 M 4 O 4 On XAP 800 unit 7 (#57), mic (M) channel 1 is routed (MTRX) as gated (4) to output (0) 4.

MTRXLVL - Matrix Attenuation Adjustment

This command selects/reports the matrix level at the cross point.

Command form: DEVICE MTRXLVL < SRC CHNL > < SRC GRP >

< DEST CHNL> < DEST GRP> [Value] [A/R]

Argument details

Values indicate entry range		
only. Actual internal range		
of the gain stage is from		
-60 to 0 and absolute values will be		
limited to the internal gain range.		
Absolute levels below -60 will mute		
the gain stage.		

Name	Description	Units
Device	0-7 or * to select all units	
MTRXLVL	Command form	
SRC CHNL	See Groups and Channels, page 97	
SRC GRP	I, M, P, L, E	
DEST CHNL	See Groups and Channels, page 97	
DEST GRP	0, P, E	
Value	-99.99 to 99.99	dB
	Null = Current mode	
A/R	A = Absolute	
	R = Relative, Null = Relative	

Example: #50 MTRXLVL 1 M 4 O -6 On XAP 800 unit 0 (#50), cross point attenuation (MTRXLVL) at the point of mic (M) 1 and output (O) 4 is -6dB.

MUTE - Mute

This command selects/reports the setting of mute on input, output or processing channels.

Command form: DEVICE **MUTE** < Channel > < Group > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

MUTE Command form

Channel See Groups and Channels, page 97

Group I, O, M, P, L

Value 0 = Off, 1 = On, 2 = Toggle, Null = current mode

Example: #51 MUTE 2 M 1 On XAP 800 unit 1 (#51), the mute (MUTE) for

mic (M) channel 2 is on (1).

NCD - Noise Cancellation Depth

This command selects/reports the noise cancellation amount for each mic channel.

Command form: DEVICE **NCD** < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

NCD Command form
Channel 1–8 (select mic input)

Value 6 - 15 (set noise cancellation from 6 to 15dB),

Null to return the current mode

Example: #52 NCD 1 9 On XAP 800 unit 2 (#52), the noise cancellation depth

(NCD) of mic channel 1 is 9dB.

NCSEL - Noise Cancellation Select

This command selects/reports the Noise Cancellation for each mic channel.

Command form: DEVICE NCSEL < Channel > < Value >

Argument details

Name Description

Device 0–7 or * to select all units

NCSEL Command form
Channel 1–8 (select mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current state

Example: #53 NCSEL 2 1 On XAP 800 unit 3 (#53), the noise cancellation

(NCSEL) for mic channel 2 is enabled (1).

Noise cancellation must be enabled for this command to have any effect on audio

quality.

This setting is not affected by the echo canceller settings.

NLP - Non-Linear Processing Adjust

This command selects/reports the setting of the Non-linear processing for each microphone channel.

Command form: DEVICE NLP < Channel > [Value]

Argument details

Name	Description
Device	0-7 or * to select all units
NLP	Command form
Channel	1-8 (select mic input)
Value	0 = Off, $1 = Soft$, $2 = Medium$, $3 = Aggressive$
	Null = Current mode

Example: #54 NLP 2 1 On XAP 800 unit 4 (**#54**), the non-linear processing (**NLP**) for mic channel **2** is set to soft (**1**).

Device Type ID PSR1212 4 0-7 XAP 800 5 0-7 XAP TH2 6 0-F XAP 400 7 0-7

NOM - Number of Open Microphones Mode

This command selects/reports the setting of Number of Open Microphones (NOM) on output channels. Command form: DEVICE **NOM** < Channel > [Value]

Argument details

Description
0-7 or * to select all units
Command form
1–12 (select output)
0 = Off, $1 = On$, $2 = Toggle$, $NuII = Current mode$

Example: #55 NOM 2 1 On XAP 800 unit 5 (**#55**), the number of open microphones (**NOM**) attenuation for output **2** is on (**1**).

OFFA - Off Attenuation Mode

This command selects/reports the off attenuation mode of input channels 1–8. Command form: DEVICE **OFFA** < Channel > [Value]

Argument details

Name	Description	Units
Device	0-7 or * to select all units	
OFFA	Command	
Channel	1-8 (select mic input)	
Value	0-60 (select off attenuation level)	dB
	Null to return the current off attenuation level	

Example: #56 OFFA 1 12 On XAP 800 unit 6 (**#56**), the off attenuation

(OFFA) for mic channel 1 is 12dB.

PAA - PA Adaptive Mode

This command selects/reports PA adaptive mode for the specified mixer. There can be only one selection per mixer.

Command form: DEVICE **PAA** < Channel > [Value]

Argument details

Name Description Units

Device 0–7 or * to select all units

PAA Command

Channel 1–8 (select mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current mode

Example: #57 PAA 1 0 On XAP 800 unit 7 (#57), the PA adaptive mode

(PAA) on mic channel 1 is disabled (0).

PP - Phantom Power

This command selects/reports the setting of phantom power.

Command form: DEVICE **PP** < Channel > [Value]

Argument details

Name Description Units

Device 0–7 or * to select all units

PP Command

Channel 1–8 (select mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current mode

Example: #51 PP 2 1 On XAP 800 unit 1 (#51), the phantom power supply

(PP) for mic channel 2 is enabled (1).

PRESET - Preset Execution/Reporting

This command selects/reports the state of a preset.

Command form: DEVICE PRESET < Channel > [Value]

Argument details

Name Description Units

Device 0–7 or * to select all units

PRESET Command

Channel 1–32 (select preset)

Value 0 = Set the preset state to off

1 = Execute the preset and set the state to on 2 = Execute the preset and set the state to off

Null = Returns the current preset state

Example: #52 PRESET 5 1 On XAP 800 unit 2 (#52), preset (PRESET) 5 will

execute and set the state to on (1).

PRGSTRING - Program String

This command sets/reports a programmed string.

Command form: DEVICE **PRGSTRING** <ID> [Value]

Argument details

Name Description

Device 0–7 or * to select all units

PRGSTRING Command

ID 0 – 7 (string location) Value 1–80 Characters

CLEAR = Clear current value

Null = Current value

Example: #53 PRGSTRING 2 MUTE On XAP 800 unit 3 (#53), string

location 2 is programmed (PRGSTRING) with MUTE.

Supported special characters

 $\a = alert$

\b = backspace

 $\fint f = formfeed$

n = new line

\r = carriage return

\t = horizontal tab

 $\v = \ensuremath{\mathsf{vertical}}\ \ensuremath{\mathsf{tab}}$

RAMP - Ramp Gain Adjustment

This command starts/stops the gain ramp for an input, output, or assignable processing block. There is no query for this command.

Command form: DEVICE **RAMP** < Channel > < Group > < Rate > [Target]

Argument details

Name	Description	Unit
Device	0-7 or * to select all units	
RAMP	Command	
Channel	See Groups and Channels, page 97	
Group	I, O, M, L, P, T, R (1, 2, 3, 5, 16, 17)	
Rate	-50 to 50	dB/s
	If value $= 0$. the ramp will stop	
	If value < 0 , the gain will ramp down	n
	If value > 0 , the gain will ramp up	
Target	-65 to 20	dB
	If null in text, the ramp will use the	

Example: #57 RAMP 5 L 6 12 On XAP 800 unit 7 (#57), the gain (RAMP) on Line Input 5 will increase at a rate of 6dB/sec until the 12dB point is reached.

channel's maximum and minimum for a target

REFSEL - PA/AEC Reference Select

This command selects/reports which output is used for each mic as a reference for power amp adaptation mode and acoustic echo cancellation where applicable. There can be only one selection per mixer.

Command form: DEVICE **REFSEL** < Channel > [Ref. Group] [Ref. Channel]

Argument details

Name	Description
Device	0-7 or * to select all units
REFSEL	Command
Channel	1-8 (select mic input)
Ref. Group	0 = Output, $E = Expansion bus$
Ref. Channel	1-9, 0-Z (select output or E-bus channel)

Example: #50 REFSEL 1 O 8 On XAP 800 unit 7 (#50), the PA/AEC reference

REFSEL for mic channel 1 is output (0) 12.

REFSET - Reference channel setup

This command selects/reports the output the reference channel tracks. Command form: DEVICE **REFSET** < Channel > < Group > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

REFSET Command

Channel 1–4 (select Virtual Reference number)
Group 1–9 (select output channel to track)

Value 0 = none

Example: #53 REFSET 2 4 On XAP 800 unit 3 (**#53**), virtual reference (**2**) will track gain changes mde on output channel 4.

Device	Type	ID
PSR1212	4	0-7
XAP 800	5	0-7
XAP TH2	6	0 - F
XAP 400	7	0-7

SERECHO - Serial Echo

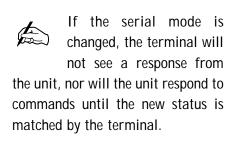
This command selects/reports the serial echo of the RS-232 port. $\label{eq:command}$

Command form: DEVICE SERECHO [Value]

Argument details

Name Description

Device 0–7 or * to select all units


SERECHO Command

Channel See Groups and Channels, page 97

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current state

Example: #54 SERECHO 1 On XAP 800 unit 4 (#54), the serial echo

(**SERECHO**) of the RS-232 port is set to on (1).

SERMODE - Serial Mode

This command selects/reports the serial mode of the RS-232 port.

Command form: DEVICE **SERMODE** [Value]

Argument details

Name Description

Device 0–7 or * to select all units

SERMODE Command

Value 1 = Text, 2 = Binary, Null = Current mode

Example: #55 SERMODE 1 On XAP 800 unit 5 (**#55**), the RS-232 port serial mode (**SERMODE**) is set to text (1).

SFTYMUTE - Safety mute

Selects/reports the state of the safety mute. When on, the safety mute holds all outputs on the selected unit in a muted state. It is used primarily for troubleshooting G-Ware.

Command form: DEVICE SFTYMUTE [Value]

Argument details

Name Description

Device 0–7 or * to select all units

SFTYMUTE Command

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current state

Example: #52 SFTYMUTE 1 On XAP 800 unit 2 (#52), safety mute

(SFTYMUTE) is enabled (1).

SIGGEN - Signal Generator

This command selects/reports of the signal generator activation.

Command form: DEVICE **SIGGEN** < Channel > < Group > [Type] [Amplitude]

[Frequency]

Argument details

Name Description

Device 0–7 or * to select all units

SIGGEN Command

Channel See Groups and Channels, page 97

Group I, M, L

Type 0 = Off, 1 = Pink, 2 = White, 3 = Tone, Null = Current state

Amplitude -60 to +20 amplitude in dB; NULL for type 0

Frequency 20 to 20,000 frequency in Hz (only needed when using tone

generation)

Example: #56 SIGGEN 1 M 2 0 On XAP 800 unit 6 (#56), the signal generator (SIGGEN) is set to input at mic (M) channel 1 with white noise (2) at 0dB.

SIGTOUT - Signal Generator Time Out

Sets the signal generator time out for the unit. Command form: DEVICE **SIGTOUT** [Value]

Argument details

Name Description

Device 0–7 or * to select all units

SIGGEN Command

Value 0 = Off, 1-30 = Set time out minutes, Null = Current rate

Example: #57 SIGTOUT 15 On XAP 800 unit 7 (**#57**), the signal generator time out (**SIGTOUT**) is set to **15** minutes.

SLVL - Speech Level Control Enable/Disable

This command selects/reports the setting of speech level control for a microphone. Command form: DEVICE SLVL < Channel > [Value]

Argument details

Name Description

Device 0–7 or * to select all units

SLVL Command

Channel 1–8 (select mic input)

Value 0 = Off, 1 = On, 2 = Toggle, Null = Current mode

Example: #50 SLVL 2 M 1 On XAp 400 unit 0 (#50), the speech leveler for mic (M) channel 2 is set to on (1).

STRING - String Execution

This command sends the specified string out the serial port.

Command form: DEVICE **STRING** [ID]

Argument details

Name Description

Device 0–7 or * to select all units

STRING Command ID 0 – 7

Null to query last string in text

Example: #51 STRING 3 On XAP 800 unit 1 (**#51**), the **STRING** programmed into location **3** will be sent out the RS-232 port.

The serial command to create a string is PRGSTRING (Program

String). See page 122.

TOUT - Time Out Select

This command selects/reports the inactivity time out before returning to the unit title screen.

Command form: DEVICE TOUT [Value]

Argument details

Name Description

Device 0–7 or * to select all units

TOUT Command

Value 0 = Off, 1–15 (select time out in minutes)

Null = Current mode

Example: #52 TOUT 5 On XAP 800 unit 2 (**#52**), the front panel of the unit will

time out (TOUT) after 5 minutes.

UID - Unit ID

This command reports the unit ID. This command is read only.

Command form: DEVICE **UID** [Value]

Argument details

Name	Description	Units
Device	0–7 or * to select all units	

UID Command

Value Null to return value Hexadecimal

Example: #53 UID B465F991 The unit ID number (UID) received from XAP 800

unit 3 (#53), is B456F991.

VER - Version

This command reports the firmware version of the unit. This command is read only. Command form: DEVICE **VER** [Value]

Argument details

Name	Desci	ription)	
Б		ala e		

Device 0–7 or * to select all units

VER Command

Value Null to return value

Example: #54 VER 1.0.0 The version of the firmware (**VER**) programmed into XAP 800 unit 4 (**#54**), is **1.0.0**.

Appendix F: Warranty

ClearOne Communications, Inc. (Manufacturer) warrants that this product is free of defects in both materials and workmanship. Should any part of this product be defective, the Manufacturer agrees, at its option, to:

- A. Repair or replace any defective part free of charge (except transportation charges) for a period of one year from the date of installation for the enduser, provided the owner returns the product to the Manufacturer at the address set forth below. No charge will be made for parts or labor during this period;
- B. Furnish replacement for any defective parts in the product for a period of one year from the date of original purchase. Replacement parts shall be furnished without charge, except labor and transportation.

This Warranty excludes assembled products not manufactured by the Manufacturer whether or not they are incorporated in a Manufacturer product or sold under a Manufacturer part or model number.

THIS WARRANTY IS VOID IF:

- A. The product has been damaged by negligence, accident, act of God, or mishandling, or has not been operated in accordance with the procedures described in the operating and technical instructions; or,
- B. The product has been altered or repaired by other than the Manufacturer or an authorized service representative of the Manufacturer; or,
- C. Adaptations or accessories other than those manufactured or provided by the Manufacturer have been made or attached to the product which, in the determination of the Manufacturer, shall have affected the performance, safety or reliability of the product; or,
- D. The product's original serial number has been modified or removed.

NO OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE, APPLIES TO THE PRODUCT. MANUFACTURER'S MAXIMUM LIABILITY HEREUNDER SHALL BE THE AMOUNT PAID BY THE END-USER FOR THE PRODUCT. No person or entity authorized to assume any obligation or other liability in connection with the products. No action, regardless of form, arising out of or relating to the product or this Warranty, may be brought by end-user more than one (1) year after the cause of action has accrued.

Manufacturer shall not be liable for punitive, consequential, or incidental damages, expenses, or loss of revenue or property, inconvenience, or interruption in operation experienced by the end user due to a malfunction in the purchased product. No warranty service performed on any product shall extend the applicable warranty period.

In case of unsatisfactory operation, the end-user shall promptly notify the Manufacturer at the address set forth below in writing, giving full particulars as to the defects or unsatisfactory operation. Upon receipt of such notice, the Manufacturer will give instructions respecting the shipment of the product, or such other matters as it elects to honor this warranty as above provided. This warranty does not cover damage to the product during shipping and the Manufacturer assumes no responsibility for such damage. All shipping costs shall be paid by the customer.

This warranty extends only to the original end user and is not assignable or transferable. This Warranty is governed by the laws of the State of Utah, without regard to the conflicts of interests provisions thereof.

ClearOne Communications 1825 Research Way Salt Lake City, Utah 84119

Appendix G: Compliance

FCC Part 15 Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his/her own expense.

Changes or modifications not expressly approved by ClearOne Communications could void the user's authority to operate the equipment.

This equipment meets the following compliance standards:

USA: FCC and CSA

Europe: CE

Australia: ACA

Canada: IC and CSA

Mexico: NOM and Cofetel

South Africa: SABS

Japan: VCCI and JATE

This equipment complies with the requirements of the EU guidelines:

89/336/EEC: "Electromagnetic Compatibility"

73/23/EEC "Electrical operating material for use within specific

voltage limits"

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device may not cause harmful interference that may cause undesired operation.

Safety Information

CAUTION: Users should not attempt to make such connections themselves, but should contact the appropriate electrical inspection authority, or electrician, as appropriate.

Glossary

Acoustic Echo Cancellation (AEC) A process in which acoustical echo is removed from a signal. AEC can be used to remove unwanted signals from mic audio if the unwanted acoustic signal is available separately as an electronic signal.

Adaptive Ambient This portion of the mixer monitors the varying ambient noise level in the room and changes the threshold level at which a microphone gates on.

Ambient Level The manually-set background noise level upon which the XAP 800 bases gating protocols. Used only if the Adaptive Ambient feature isn't used.

Ambient Noise The existing room-level noise, such as that caused by ventilation systems, paper shuffling, and background chatter.

Amplitude Plot A plot of amplitude (-18 to 18dB) vs. frequency (20Hz to 20kHz) on a logarithmic scale.

Attack Time This signal parameter determines how quickly compression is enabled. It is calibrated in milliseconds.

Attenuation A reduction of signal amplitude.

Audio Processor A device that modifies an audio signal in response to certain requirements.

Audio routing The process of routing input signals (Mics 1–8, Inputs 9-12, From E-bus, From Processing) to output destinations (Output 1–12, To E-bus, To Processing) in the Matrix screen.

Automatic Gain Control (AGC) Automatically increases or decreases audio gain to maintain a consistent audio level.

Automatic Gating Automatically gates microphones on or off based on input levels and other parameters programmed into the XAP 800.

Auxiliary audio Audio that comes from line level audio sources such as video codecs, TH2s, and CD players.

Bandwidth The difference between the lower and upper 3dB end points of an audio band. Also, the range or differences between the limiting frequencies of a continuous frequency band.

Baud Rate The number of signal transitions per second, or the clock rate of the serial bit stream in hertz. Given 7 or 8 bits for data plus start and stop, the approximate ASCII character transmission rate is one-tenth the baud rate.

Chairman Override Provides gating priority for chairman override enabled microphones within the same gating group. When a mic with chairman override gates on, all mics which don't have chairman override enabled and are in the same gating group will gate off.

Clipping A condition in which a signal level exceeds the maximum level a circuit can handle. This is usually caused by improper gating parameters and gain settings. It causes distortion and typically leads to listener fatigue and accelerated failure of loudspeaker drivers.

Compression An induced reduction in the dynamic range of part or all of an audio signal. Compression is usually used to protect individual loudspeaker components from the damaging effects of transients.

Compressor The compressor is part of the processing settings and allows you to change the gain transfer characteristics of the signal path and to control the dynamics of the signal.

Configuration mode Configuration mode is the default mode in G-Ware and is used for system setup. It provides access to the Matrix and Flow Screens. See also Preset mode and Macro mode.

Control bus Part of the expansion bus, the control bus passes control information to the units. Control is not affected by master/slave settings and will continue to function even if the units are not using the audio channels.

Constant Directivity Horn Equalizer (CD Horn EQ) Horn drivers commonly used in arrays in arenas and auditoriums have an inherent 6dB/octave high frequency rolloff. The XAP 800's CD Horn EQ compensates for this characteristic.

Crossover A device that passes designated frequency segments of an audio signal to various loudspeaker elements in a sound system.

- **Bessel** A crossover using a low-pass filter design characterized by a linear phase response. This results in a constant time delay throughout the passband.
- Butterworth A crossover using a low-pass filter design characterized by a
 maximally flat magnitude response. This results in no amplitude ripple in the
 passband.
- Linkwitz-Riley A fourth-order crossover consisting of a cascaded secondorder Butterworth low-pass filter. Offers a vast improvement over the Butterworth crossover and is the de facto standard for professional audio active crossovers.

Cross point The intersection between an input and an output in the routing matrix. Cross point cells are colored according to input type.

Cross point attenuation The process of attenuating audio level at the cross point. Audio can be attenuated from 0 to 60dB.

Decay Rate (slow, medium, fast) Determines how fast a channel gates off after hold time expires. Default is medium.

Default meter The input/output displayed on the front panel LED meter when a input/output meter is not specifically selected elsewhere.

Delay A setting in the Processing window. Delay calculates the amount of signal delay (up to 500ms) based on the distance between audio source and audience and the temperature.

Device ID A number which identifies the unit when multiple units of the same device type are connected in an E-bus network. Because up to eight XAP 800s may be used in the same network, the device ID range is 0–7.

Device Type A number which identifies the type of unit. For example, a XAP 800 is device type 5.

DSP Digital signal processor.

Echo Canceller Reference The signal point which contains an electronic copy of all signals which will be removed from the signal the mics pick up. This is always the far-end audio and, optionally, local program material.

EC Reference summing The ability to include multiple signals in a single reference. See also Virtual Reference.

ERL Found in the Acoustic Echo Canceller window, the echo return loss (ERL) meter shows the coupling between the reference signal and the input to the echo canceller—the ratio of the two levels.

ERLE Found in the Acoustic Echo Canceller window, the echo return loss enhancement (ERLE) meter shows the loss through the echo cancellation and non-linear processing chain—the ratio of the two levels.

Expansion Bus Consists of two RJ-45 connectors on the rear panel of the XAP 800. An Expansion Bus allows multiple XAP 800s to be networked together using category five twisted-pair (10BaseT) cable.

Expansion Bus reference One of the echo cancellation/PA adapt reference options. The Expansion Bus reference allows you to reference an output on a networked unit.

Filter A device that passes and blocks audio signals based on user-definable requirements of the system.

- All Pass A filter that provides only phase shift or phase delay without
 appreciably changing the magnitude characteristic. The filter produces a flat
 amplitude response. It is useful for matching the delay of two processing
 channels with different delays.
- **High Pass** A filter that passes high signal frequencies while attenuating low frequencies. The gain or loss
- High Shelving Provides boosting or attenuation of frequencies above a
 designated frequency. The transition between the spectrum above and below
 the designated frequency occurs at a fixed 6dB/octave rate. The gain or loss
 above the corner frequency is adjustable to +/- 15dB.
- Low Pass A filter that passes low frequencies while attenuating high frequencies.
- Low Shelving Provides boosting or attenuation of frequencies below a
 designated frequency. The transition between the spectrum above and below
 the designated frequency occurs at a fixed 6dB/octave rate. The gain or loss
 below the corner frequency is adjustable to +/- 15dB.

Filter Display A group of nodes plotted on a logarithmic scale. The XAP 800's filter display can be accessed through the Inputs 1-8, From Processing, or To Processing windows.

First Mic Priority Increases the audio level required to gate on additional microphones after the first mic is on. This helps ensure that only one mic gates on when a person speaks.

Flow control The regulation of the transmission and reception of data.

Flow Screen The Flow Screen is the main access window for G-Ware features and unit configuration. It also shows a detailed block diagram of the audio signal—presenting a graphical explanation of each stage in the signal path.

Gain The amount a signal is increased over a given reference, typically 0. Normally specified in dB (decibels). On the XAP 800, gain is adjustable from -65 to 20dB (85dB range) in .5dB increments.

Gain Structure The configuration of parameters which define gain adjustment of a signal. The optimal input gain setting is one which provides both an adequate signal-to-noise ratio and reasonable headroom.

Gate The activation and deactivation of microphones.

- Auto The microphone will gate on according to the input level, assigned gating parmeters, and gating group.
- Manual On The microphone will gate on unless it exceeds the NOM requirements of the gating group.
- **Manual Off** The microphone is deactivated.

Gate Ratio Specifies how much louder the microphone audio level must be above the ambient sound level before a microphone gates on.

Gating controls The gating parameters that are assigned to a gating group: Maximum Number of Mics, First Mic Priority, and Last Mic Mode.

Gating groups A set of gating parameters which can be applied to local microphones (Internal 1–4) or to microphones connected to other units on the network (Global A–D). Gating groups provide greater flexibility and control of mics.

Gentner Distributed Echo Cancellation ClearOne's proprietary system for applying echo cancellation individually to each mic input.

Global gating bus Part of the expansion bus, these four mix-minus buses pass mic status and gate parameter information such as First Mic Priority and Max NOM.

GPIO (general purpose input/output) The Control/Status A and B ports on the XAP 800 unit. The GPIO Builder is used to program Control/Status A pins.

G-Ware Software The XAP 800's setup and configuration software.

Hold Time The length of time that a microphone remains on after the voice (input) level drops below the gate ratio. This can be used to prevent the microphone from gating off during brief pauses in speech.

Last Mic Mode Sets the last-activated mic to Last On, Mic 1-8, or Off. The Last On setting leaves the last-activated mic gated on until another mic input gates on.

Macro A series of user-created instructions, stored within the unit, which can be executed from an RS-232 command or contact closure.

Macro Mode The G-Ware mode that allows you to customize and execute macro commands for a XAP 800 unit or network.

Manual Gating Provides the ability to gate a microphone on or off manually.

Matrix Mixer A mixer that allows routing of any input or combination of inputs to an output or any combination of outputs. In the case of the XAP 800, the matrix mixer permits level control at each cross point in the matrix.

Matrix Screen The Matrix Screen facilitates the routing of any input to any output or combination of outputs.

Maximum Number of Mics Sets the maximum number of mics that can be gated on simultaneously.

Microphone Activation A condition in which a microphone is gated on.

Microphone Mixing A situation in which audio from mics on different signal lines are mixed together. All mic signals can be mixed to one signal line, any or all outputs, or mixed into separate groups. Mic signals can also be processed together or individually.

Microphone 1 Mode Reverts mic assignment to a designated mic when all mics gate off.

Min/Max adjust The yellow and blue upper and lower limit arows on gain scales are used to create minimum and maximum gain level limits. These limits only apply when using relative gain commnds; absolute gain commands can exceed the min and max limits. Min and max limits apply to all serially connected control devices and preven users from adjusting levels beyond the min/max levels provided relative gain commands are used.

Mixer mode The mixer mode has two settings: master and slave. Mixer mode can be configured from the front panel or in the Unit Properties window.

Mute A condition in which an audio signal is attenuated below the audible threshold.

Noise Cancellation A process through which ambient noise is removed from a signal.

Non-linear processing (NLP) NLP increaess the power of echo cancellation for difficult acoustical environments. NLP has four settings: Soft (6dB), Medium (12dB), Aggressive (18dB), and Off. NLP settings are found in the Acoustic Echo Cancellation window.

Number of Open Mics (NOM)/Constant Gain Mode Adjusts the output level based on the number of mics gated on and routed to an output.

O–R buses These four audio buses communicate NOM count and mic mixing parameters.

Off Attenuation The amount of level reduction a microphone is given when the microphone is not gated on.

PA Adaptive Mode The XAP 800 recognizes how much loudspeaker audio is picked up by the microphones and then uses this level as the new ambient level when audio is present at the power amplifier. This prevents loudspeaker audio from gating on a microphone, while still allowing people in the room to gate on microphones as they speak.

PA Adapt/AEC Reference This G-Ware setting determines which output (typically for a loudspeaker) is used as a reference for an input.

PA Adapt/AEC Reference bus This bus carries reference information making it possible for an input to reference an output on another linked unit.

Parametric Equalizer (PEQ) A multi-band variable equalizer with control of gain, center frequency, and bandwidth. A properly configured PEQ enables the XAP 800 to offset speaker or room acoustic deficiencies.

Passwords The XAP 800 features several passwords to protect system configuration.

- Front panel The front panel password prevents a user from changing settings in the front panel LCD menus. The password can be set from the front panel or through G-Ware.
- Macro The macro password is created in the Unit Properties window and makes it possible to lock certain macros. A locked macro can be run without the password. However, a password must be entered to edit the macro.
- Modem The modem password can be created serially using the MPASS command or through G-Ware in the Unit Properties window. The password is required to allow remote modem access.
- Preset The preset pasword is created in the Unit Properties window and makes it possible to lock certain presets. A locked preset can be executed without the password. However, a password must be entered to edit the preset.
- **Site file (File Access)** The site file password is set in the Site Properties window and will lock the site file. Users must enter the password in order to open the site file.

Phantom Power Power supplied by the XAP 800 to power most condenser microphones. The XAP 800 provides 24 volts of phantom power. This feature can be switched off for devices not requiring phantom power.

Phase Plot A plot of phase angle (-180 to 180 degrees) vs. frequency (20Hz to 20kHz) on a logarithmic scale.

Pink Noise An audio test signal containing all the frequencies in a given audio spectrum, with equal energy in each octave.

Preset One of 32 configurable memories in the XAP 800. A preset can be programmed with a variety of routing, level, gating, delay, filter, and equalizer settings to meet specific application requirements.

Preset Mask Defines whether a contact closure activates on a low or high signal on the rear panel of the unit.

Preset Mode Preset mode is used to create presets and is accessed from the G-Ware toolbar.

Processing blocks There are four processing blocks or channels (A–H) in the XAP 800 each with 15 filters, delay, and a compressor for pinpoint audio configuration. A single input or group of inputs can be routed through a processing block and then routed to an output or multiple outputs.

Q Quality factor. It is the ratio of the center frequency divided by the bandwidth. Q reflects an inverse relationship to the bandwidth, and adjusts from .02:1 to 40:1 on the XAP 800.

Ratio The amount of compression applied to the output signal compared with the input signal as the signal exceeds the threshold level.

Release time Release is a parameter which determines how quickly compression is released after the input signal drops below the threshold.

Reverberation A diffused acoustic energy field fed and maintained by sound reflections from the room surfaces.

S–Z buses These eight buses are defaulted as auxiliary mix buses. They are used to route auxiliary audio to and from other units on the network. These buses are also used as mic mix buses when NOM count is not required.

Serial Command A bit description designed to execute an instruction or command.

Serial mode The serial mode determines the format in which serial commands return—text or binary. The mode defaults to Binary when G-Ware is connected and to Text when disconnected. Contact technical support for instructions on using Binary mode.

Signal Delay Used for:

- Compensating for physical placement of multiple drivers in a cluster—to align points of acoustic origin in the same plane.
- Ensure matching arrival times at listeners from multiple loudspeaker drivers.
- Using the Haas effect to maintain localization of the source, even with a distributed system.

Signal Generator A device for generating a reference tone for sound system calibration purposes.

Site file A site file is a file created by G-Ware which is saved on your computer. The site file contains all information about a particular installation including all unit settings and properties. It also provides G-Ware with the necessary information to communicate with the site hardware using your PC.

Site properties The Site Properties window opens when you select New Site from the File menu or click on the New Site button on the toolbar. It allows you to enter information about the site as well as configure the communication and security settings.

Speech Leveler Essentially an AGC applied to a speech signal after processing by a noise cancellation stage. Acts only on voice signals. Does not pull up the noise floor during periods of no signal.

Table View Displays the numerical values of the filter parameters for all nodes of the active filter display.

Threshold The upper or lower level at which a signal processing mechanism begins or terminates operation.

Unit properties The Unit Properties window opens when you add a new unit to the site. It allows you to enter information about the unit as well as configure the communication and security settings.

Virtual reference Virtual references are echo cancellation reference points. Multiple signals can be included in each of the four virtual references thus allowing you to reference multiple signals without sacrificing an analog output. You can open the Virtual Reference window from the G-Ware toolbar or from the Acoustic Echo Cancellation window.

White Noise Acoustical noise with equal energy throughout a given frequency range.

Index

A	Compressor 49–51, 85, 102, 103, 132
acoustic echo cancellation 33–35, 40, 99, 131	attack time 49, 51, 102, 131
echo return loss (ERL) 35	compression meter 51
echo return loss enhancement (ERLE) 35	group 50
non-linear processing (NLP) 35	input meter 51
AEC settings 33–35	post compressor gain 50
total echo reduction 35	ratio 51
adaptive ambient 38, 39, 86, 99, 131	release time 49, 51
add unit 24	threshold 50
AEC see acoustic echo cancellation	connect 10, 24
AEC reference 7, 33, 38, 40	sync to document 24
AGC see automatic gain control	Sync to Unit(s) 24
ALC see automatic level control	constant gain 46, 47, 136
All Pass 36, 51, 85, 86, 105, 134	control bus 6, 7, 132
ambient level 38-39, 42, 200, 131	Control Panels 6, 57, 60, 79–82, 91–93
ambient noise 35, 38, 131	connecting 91
attack time see Compressor	Select panel 81
audio routing 6, 27, 29, 30, 31, 55, 131	Volume panel 80
O–Z routing 30	Control/Status A 10, 77, 88,
Process A–D routing 30	Control/Status B 61, 89
Auto Sweep 77 see also Signal Generator	copy and paste 28, 31, 74
auto-detect 24	cross point 29, 30–31, 56, 119, 133
automatic gain control 32-33, 43-44, 99,	Cross Point Attenuation Dial window 30
active gain 33	crossover 53, 85, 105
response time 33	_
target level 33	D
auxiliary audio 7, 30, 33, 44, 131	DEC see Gentner Distributed Echo Cancellation
	default meter 16, 18, 25, 105
В	delay 6, 49, 53, 54, 103, 104,
bandwidth 36, 37, 105, 131	device ID 12, 15, 25, 79, 105
baud rate 16, 23, 25, 82, 85, 101, 131	device type 64, 79, 95
	Distributed Echo Cancellation see Gentner
Γ	Distributed Echo Cancellation
cotogory five twicted pair coble. 11	Document Compare Utility 68
category five twisted-pair cable 11	DSP 1, 105, 133
Chairman Override 38, 86, 102, 132 Clear Matrix 30	
	E
clear password 15 clipping 43, 45, 47, 54, 132	EC Reference see AEC reference
codecs see video codecs	ERL 16, 17, 35, 133
	ERLE 16, 17, 35, 133
COM port 21, 23 command line 60, 63, 65, 94	Execute Preset 60
Command Strings 83	expansion bus 41, 115, 133
compare site 68	connections 9, 11
compare site to	labels 48

network 6, 11, 115	Н
reference 33, 40, 58, 123	High Pass 36, 51, 85, 86, 105, 134
routing to 29, 30	hold time 39, 108, 135
Expansion Bus In/Out 5, 11, 85	
Г	1
F	Inputs 1–8 32
File Access Password 23	AEC 33
filter 35–37, 51–53, 105, 106, 134	AGC/SL 32
First Mic Priority 42, 85, 106, 134	filters 35
floppy disk 22	gate 38
flow control 15, 23, 25, 85, 106, 134	mute 32
Flow Screen 27, 30	NC 35
front panel control 4, 60 see also LCD menu	PA Adapt and AEC Reference 33
front panel passcode 15	phantom power 33
	virtual echo cancellation reference 34
G	Inputs 9–12 44
G-Ware 22	AGC 44
installation 22	meters 45
Program Folder 22	mute 44
G-Ware Switcher 74	Inputs menu 18
gain structure 43, 45, 47, 54, 135	gain 18
Gate 6, 7, 38	mute 18
activation 38	
adaptive ambient 38	L
ambient level 39	labels 27, 29, 48, 56, 57
auto-gate 38	Last Mic On 97, 111
chairman override 38	latency 6
decay rate 39	LCD menu 13, 16, 25
gate ratio 39	LCD menu tree 13
hold time 39	LCD Programming 13
manual off 38	adjust a parameter 14, 15
manual on 38	line level 32, 42, 44, 45, 46, 86
off attenuation 39	line level outputs 46
PA Adaptive mode 38	Low Pass 36, 51, 85, 86, 105, 134
Gate View 75	
Gating Group 38, 41–42, 56, 110, 135	M
First Mic Priority 42	Macro Editor 26, 27, 63–66
Global A–D 41	macro password 26, 111–112, 137
Internal 1–4 41	Macro Recorder 27, 63, 65
Last Mic Mode 42	macros 60–62, 63–66, 114, 135
Max # of Mics 41	
0 . 51	editing macros 65
Gentner Distributed Echo Cancellation 1, 32,	editing macros 65 Macro Editor 64-65
49, 133	Macro Editor 64-65
49, 133 GFirm Firmware Utility 72	Macro Editor 64–65 macro password 64
49, 133	Macro Editor 64-65

master setting 12, 15, 114	buses 7
Matrix Screen 27-32, 136	PA Adaptive Mode 38
Message Log 28, 75	password 26
meter 4	front panel 26
Meter menu 16	file access 23
Default Meter 18	macro password 64
ERL 17	modem 26
ERLE 17	preset password 56
Inputs 17	PEQ (parametric equalizer) 36
Outputs 17	phantom power 33
Processing 17	pink noise 67
Meter reference 19	pinouts 87
Meter View 76	Control/Status A 88
Meters 43	Control/Status B 89
post gain 43	Line 90
post gating 43	RS-232 87
post processing 43	RS-485 90
pre pain 43	Set 90
Min/Max limits 42	preset 5, 14, 26, 27, 55-62, 138
mixer mode 9, 12, 14, 15, 136	creating presets 55, 59
modem 15, 16, 23, 26, 82, 87, 97, 115, 117	executing preset 60
modem access 82	front panel control 60
password 82	multiple presets 60
	Preset Configuration pane 56
N	preset masking 57
NLP see non-linear processing	preset password 56
noise cancellation 35, 85, 119, 136	preset state 60
NOM 30, 38, 46, 47, 120, 136	Reference Matrix 58
non-gated 5, 29, 30, 44	Remote Assignment 57
non-linear processing 35, 98, 120, 136	room combining 61
Notch 36, 51, 85, 86, 105	routing matrix 56
1101011 00,01,00,00,100	running multiple presets 60
0	running presets 60
	Preset mode 55
Off LED/button 4	Print 28, 31, 58, 70, 71
On LED/button 4	matrix 31
Outputs 1–12 5, 10, 18, 46, 47, 85	preset 58
mute 46	preview 70
NOM 46	reports 71
Outputs menu 18	process meter 54
gain 18	processing 16, 17, 25, 27, 29, 30, 49–54, 73
mute 18	85, 138
0–R buses 6, 30, 136	Processing A–H 49
_	compressor 49
P	delay 53
PA Adapt and AEC Reference 6, 7, 33, 38,	filters 51
40. 98. 120. 123. 137	frequency response 52

phase 52	System menu 14
mute 49	Device ID 15
propagation 6, 54	Firmware Version 15
	Lock Panel 14
D	Run Macro 14
R	Select Preset 14
Ramp 123	
release time 102, 138	Set Passcode 15
Remote Builder 27, 78–82	Unit ID 15
Remote Panel 6, 10, 57, 90, 91-92	system requirements 21
response time 33, 100 see also automatic gain	S–Z 6, 7, 30, 158
control	
RJ-45 jumper 11	T
room combining 5, 60–62, 63	target level 33
routing matrix 29, 30, 34, 40, 56	threshold 33, 38–39, 49–51, 86, 102
RS-232 10, 11, 12, 82, 83, 87, 101, 124	Tone 68
	Toric 00
see also serial comands	
RS-232 menu 15	U
Baud Rate 15, 85	Unit Properties 25–26
Clear Password 16	communication 25
Flow Control 16	default meter 25
Modem Mode 16	device ID 25
RS-485 Remote Panel A/B Port 6	meter refresh rate 25
	preset/macro password 26
S	security 26
	•
Safety Mute 28, 125	serial echo 25
security 26	serial mode 25
serial commands 5, 94–127	unit name 25
command responses 94	unit type 25
command structure 94	use modem 26
device type and ID 95	Use in preset 57, 77
groups and channels 95	
list of 97–98	V
meter type 96	•
signal flow 27, 43	video codecs 30, 44, 46
site file 23, 24, 68, 139	video conferencing 9
Site Properties 16, 23, 25, 139	Virtual Reference 34, 40, 58, 139
•	
Communication 23	W
Security 23	white noise 67
Use Modem 23	Willie Holse C7
slave setting 12, 15, 25, 114	V
specifications 85	X
Speech Leveler 32, 33	XAP IR Remote 78–79
status bar 28	
status lights 28	
storage capacity 59, 63	
Sync 24, 25, 28	